• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2001 Fiscal Year Annual Research Report

小平次元0の代数多様体とボゴモロフ分解の一般化

Research Project

Project/Area Number 12440007
Research InstitutionOsaka University

Principal Investigator

並河 良典  大阪大学, 大学院・理学研究科, 助教授 (80228080)

Co-Investigator(Kenkyū-buntansha) 後藤 竜司  大阪大学, 大学院・理学研究科, 助教授 (30252571)
藤木 明  大阪大学, 大学院・理学研究科, 教授 (80027383)
宮西 正宜  大阪大学, 大学院・理学研究科, 教授 (80025311)
佐竹 郁夫  大阪大学, 大学院・理学研究科, 助手 (80243161)
大野 浩司  大阪大学, 大学院・理学研究科, 助手 (20252570)
Keywords複素シンプレクティック多様体 / トレリ問題 / モジュライ空間 / 変形理論
Research Abstract

1.複素シンプレクティック多様体に対する双有理トレリ問題の反例を構成した。すなわち第2コホモロジー群がBeauville型式と重み2のHodge構造を込めた意味で等しいのにも関わらず、双有理同値でない2つの複素既約シンプレクティック多様体を構成した。この反例により双有理類を回復するには、中間次元のコサイクルの研究が必要であることが明確になった。一方で双有理同値より少し弱い同値概念が、連接層の導来圏を用いて定義できると予想される。この同値類が第2コホモロジー群から回復できる。か否かは、今後の課題である。これらの成果を、2001年城崎代数幾何学シンポジウム、2002年東京で開かれた飯高60記念シンポジウム等で発表した。
2.特異点を持ったカラビーヤウ多様体がいつ変形により大域的にスムージングされるかという問題は、リード予想の関係から重要である。末端特異点の場合はすでに数年前に結果を得ていたにもかかわらず未投稿であった。今回、証明、例等を大幅に改訂したものを出版する予定である。

  • Research Products

    (6 results)

All Other

All Publications (6 results)

  • [Publications] 並河良典: "Deformation thcory of singular symplectic n-folds"Math.Ann.. 319. 597-623 (2001)

  • [Publications] 並河良典: "Global smoothing of Calabi-Yau Threefolds II"Compositio Math.. 125. 55-68 (2001)

  • [Publications] 並河良典: "Extension of 2-forms and symplectic Varieties"J.Reine Angew.Math.. 539. 123-147 (2001)

  • [Publications] 並河良典: "Stratified local moduli of Calabi-Yau threefold"Topology. (掲載予定).

  • [Publications] 並河良典: "Projectivity Criterion of Moishegon spaces and density of projective simplectic varieties"Intern.J.Math. (掲載予定).

  • [Publications] 並河良典: "Deformation theory of Calabi-Yaus"Sugaku exposition (AMS). (掲載予定).

URL: 

Published: 2003-04-03   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi