• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2002 Fiscal Year Final Research Report Summary

Topological Study on the Degeneration Phenomena of Riemann Surfaces

Research Project

Project/Area Number 12440013
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field Geometry
Research InstitutionThe University of Tokyo

Principal Investigator

MATSUMOTO Yukio  The University of Tokyo, Graduate School of Mathematical Sciences, Professor, 大学院・数理科学研究科, 教授 (20011637)

Co-Investigator(Kenkyū-buntansha) IMAYOSHI Yoichi  Osaka City University, Graduate School of Science, Professor, 理学部, 教授 (30091656)
ASHIKAGA Tadashi  Tohoku-Gakuin University, Faculty of Engineering, Professor, 工学部, 教授 (90125203)
FUKUHARA Shinji  Tsuda College, Department of Mathematics, Professor, 学芸学部, 教授 (20011687)
AHARA Kazushi  Meiji University, School of Science and Technology, Lecturer, 理工学部, 講師 (80247147)
KAWAZUMI Nariya  The University of Tokyo, Graduate School of Mathematical Sciences, Associate Professor, 大学院・数理科学研究科, 助教授 (30214646)
Project Period (FY) 2000 – 2002
KeywordsRiemann surfaces / degeneration / singular fiber / splitting / monodromy
Research Abstract

During the term of the project, we have made quite a good progress on the problem of splitting a given complicated singular fiber into a number of simpler singular fibers. Among others, we would like to point out Arakawa and Ashikaga's proof of the splittability of hyperelliptic singular fibers and Takamura's research on the construction of splitting families for not necessarily hyperelliptic singular fibers, Takamura being a cooperative researcher. An experimental method is also very important to the study of splitting of singular fibers. In fact Ahara developed a software "Splitica" by which we can observe the splitting motion of "star-shaped" singular fibers on a computer display. As for the global study of monodromy, Imayoshi, Ito, and Yamamoto made a research from function theoretic viewpoint. Also the quandle of cords which might be important to the study of Lefschetz fibrations, Kamada and Matsumoto studied their algebraic representation. There are obtained many other related results.

  • Research Products

    (12 results)

All Other

All Publications (12 results)

  • [Publications] T.Ashikaga: "Classification of degenerations of curves of genus 3 via Matsumoto-Montesinos' theorem"Tohoku Math.J.. 54. 195-226 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] S.Fukuhara: "Dedekind symbols associated with J-forms and their reciprocity law"J.Number Theory. 98. 236-253 (2003)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] S.Fukuhara: "Non-Commutative polynomial reciprocity formulae"International J.Math.. 12. 973-986 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] K.Ahara: "Conjugacy classes of hyperbolic mapping class group of genus 2 and 3"Experimental mathematics. 9. 383-396 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] N.Kawazumi: "Weierstrass points and Morita-Mumford classes on hyper elliptic mapping class groups"Topology and its appl.. 125. 363-383 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] S.Kamada: "Wirtinger presentations for higher dimensional manifold knots obtained from diagrams"Fund.Math.. 168. 105-112 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T. Ashikaga et al.: "Classification of degenerations of curves of genus 3 via Matsumoto-Montesinos theorem"Tohoku Math. J.. 54. 195-226 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] S. Fukuhara: "Dedekind symbols associated with J-forms and their reciprocity law"J.Number Theory. 98. 236-253 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] S. Fukuhara et al.: "Non-commutative polynomial reciprocity formulae"Intern. J. Math.. 12. 973-986 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K.Ahara: "Conjugacy classes of hyperbolic mapping class group of genus 2 and 3"Experimental math.. 9. 383-396 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] N.Kawazumi: "Weierstrass points and Morita-Mumford classes on hyperelliptic mapping class groups"Topology its appl.. 125. 363-383 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] S.Kamada: "Wirtinger presentation for higher dimensional manifold knots obtained from diagrams"Fund. Math.. 168. 105-112 (2001)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2004-04-14  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi