• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2003 Fiscal Year Final Research Report Summary

Diffeomorphism groups --from a view point of rigidity problem

Research Project

Project/Area Number 12440016
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field Geometry
Research InstitutionNagoya University

Principal Investigator

KANAI Masahiko  Nagoya University, Graduate School of Mathematics, Professor, 大学院・多元数理科学研究科, 教授 (70183035)

Co-Investigator(Kenkyū-buntansha) TSUBOI Takashi  The University of Tokyo, Graduate School of Mathematical Sciences, Professor, 大学院・数理学研究科, 教授 (40114566)
KOTANI Motoko  Tohoku University, Mathematical Institute, Associate Professor, 大学院・理学研究科, 教授 (50230024)
IZEKI Hiroyasu  Tohoku University, Mathematical Institute, Associate Professor, 大学院・理学研究科, 助教授 (90244409)
FUJIWARA Koji  Tohoku University, Mathematical Institute, Associate Professor, 大学院・理学研究科, 助教授 (60229078)
NAYATANI Shin  Nagoya University, Graduate School of Mathematics, Professor, 大学院・多元数理科学研究科, 助教授 (70222180)
Project Period (FY) 2000 – 2003
KeywordsAnosov systems / bounded cohomology / harmonic map / Kleinian group / large deviation / projectively Anosov flow / rigidity problem / spectrum
Research Abstract

<Kanai> He made computation of Gelfand-Fuks cohomology of diffeomorphism groups and their homogeneous spaces especially keeping in his mind possible applications of it to rigidity problems. A new perspective on infinitesimal rigidity of Anosov actions of higher-rank abelian groups that arise from semisimple Lie groups of rank greater than one has also been obtained by him.
<Izeki> It is known that the domain of discontinuity of a convex-cocompact Kleinian group is compact. Conversely, he proved that a Kleinian group is convex cocompact provided the Hausdorff dimension of the limit set is less than n/2.
<Izeki and Nayatani> They introduced a combinatorial notion of harmonic map of a simplicial complex into singular space of nonpositive curvature, and showed an existence theorem under an appropriate assumption. A fixed point theorem for an isometric action of a discrete group on a nonpositively curved space has been established as an application.
<Kotani> She investigated, in a joint work of T.Sunada, the large deviation principle. Another achievement by her is the Lipschitz continuity of the bounds of the spectrum of some self-adjoint operator with magnetic, effect.
<Tsuboi> A projective Anosov flow is said to be regular if its stable and unstable plane fields are integrated by smooth foliations. He proved that for a regular projective Anosov flow on a Seifert fibered space if the associated foliations have no compact leaf then it is a regular Anosov flow, and in consequence is quasi-Fuksian, due to a theorem of Ghys.
<Fujiwara> In the joint work with Bestvina, he made a computation of the second bounded cohomology of the mapping class groups. It follows that a discrete subgroup of a Lie group can never be realized as a subgroup of the mapping class groups.

  • Research Products

    (12 results)

All Other

All Publications (12 results)

  • [Publications] 井関裕靖, 納谷信: "組合せ調和写像と超剛性-SINGULAR TARGETの場合"数理解析研究所講究録. 1329. 1-7 (2003)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 井関裕靖: "高次元のクライン群の極限集合のハウスドルフ次元-収束指数と凸ココンパクト性-"数理解析研究所講究録. 1223. 61-68 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M.Bestvina, K.Fujiwara: "Bounded cohomology of subgroups of mappingclass groups"Geometry and Topology. 6. 69-89 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M.Kotani, T.Sunada: "Spectral geometry of crystal lattices"Contemporary Math.. 338. (2003)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Motoko Kotani: "Lipscitz continuity of the spectra of the magnetic transition operators on a crystal lattice"J.Geom.Phys.. 47. 323-342 (2003)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Takashi Tsuboi: "Regular projectively Anosov flows on the Seifert fibered spaces"J.Math.Soc. Japan. (to appear).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] H.Izeki, S.Nayatani: "Combinatorial harmonic maps and superrigidity -in the case of singular target -(in Japanese)"Surikaisekikenkyujo Kokyuroku. 1329. 1-17 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H.Izeki: "Hausdorff dimension of the limit set of a higher-dimensional Kleinian groups -the exponent of convergence and convex cocompactness (in Japanese)"Surikaisekikenkyujo Kokyuroku. 1223. 61-68 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M.Bestvina, K.Fujiwara: "Bounded cohomology of subgroups of mapping class groups"Geometry and Topology. 6. 69-89 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M.Kotani, T.Sunada: "Spectral geometry of crystal lattices"Contemporary Math.. 338(to appear). (2003)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Motoko Kotani: "Lipschitz continuity of the spectra of the magnetic transition operators on a crystal lattice"J.Gem.Phys.. 47. 323-342 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Takashi Tsuboi: "Regular projectively Anosov flows on the Seifert fibered spaces"J.Math.Soc.Japan. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2005-04-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi