• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2002 Fiscal Year Final Research Report Summary

Algebraic Geometry, Differential Geometry and Topology of Manifolds

Research Project

Project/Area Number 12440017
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field Geometry
Research InstitutionKyoto University

Principal Investigator

KONO Akira  Kyoto Univ., Graduate School of Science, Professor, 大学院・理学研究科, 教授 (00093237)

Co-Investigator(Kenkyū-buntansha) KOKUBU Hiroshi  Kyoto Univ., Graduate School of Science, Associate Professor, 大学院・理学研究科, 助教授 (50202057)
NAKAJIMA Hiraku  Kyoto Univ., Graduate School of Science, Professor, 大学院・理学研究科, 教授 (00201666)
FUKAYA Kenji  Kyoto Univ., Graduate School of Science, Professor, 大学院・理学研究科, 教授 (30165261)
HAMANAKA Hiroaki  Hyogo Univ. of Education, Faculty on Teacher Education Lecturer, 学校教育学部, 講師 (20294267)
MOROWAKI Atsushi  Kyoto Univ., Graduate School of Science, Associate Professor, 大学院・理学研究科, 助教授 (70191062)
Project Period (FY) 2000 – 2002
Keywordsgauge group / infinite dimensional Lie group / localization / homotopyset / homotopy associative / Cherm number / homotopical algebra
Research Abstract

1. Homotopy theory of infinite dimensional Lie groups (gauge groups etc)
A. Kono and S. Tsukuda partially solved the classification problem of the adjoint bundles of the principal bundles over finite complexes using the fibrewise homotopy theory. They determined the condition for the triviality of the adojoint bundle after the fibrewize localization. Note that gauge groups are the space of sections of the adojoint bundles.
2. Unstable K-theory
A. Kono and H. Hamanaka determined the group of homotopy classes of maps from a 2n dimensional finite complex to U(n). On the other hand A. Kono and H. Oshima(Ibaraki Univ.) classified compact Lie groups whose self homotopy classes are commutative groups.
3. Homotopical algebra
Homotopical algebra is non -commutative homological algebra. A. Kono and A. Moriwaki considered application of homotopical algebra to alebraic geometry or arithmetic geometry. Applications to mathematical physics and string theory are considered by K. Fukaya.
4. Dynamical system
Algebraic invariants for 2-dimensional projective Anosov dynamical system are defined and several elementary properties of them are obtained by M. Asaoka(Kyoto Univ).

  • Research Products

    (14 results)

All Other

All Publications (14 results)

  • [Publications] A.Kono: "Characterization of the mod 3 cohomology of E7"Proc.AMS. (掲載予定).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] A.Kono: "On the cohomology of E8"J.Math.Kyoto Univ.. (掲載予定).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] A.Kono: "Commutativity of the group of self homotopy classes of Lie groups"Bull.London Math.Soc.. (掲載予定).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] A.Kono: "On [X, U(n)] when dim X is 2n"J.Math.Kyoto Univ.. (掲載予定).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] A.Kono: "Topological characterrization of extensor product of BU"J.Math.Kyoto Univ.. (掲載予定).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] K.Fukaya: "Mirror symmetry of abelian varieties and multi-theta functions"J.Algebraic Geom.. 11. 393-512 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 河野 明: "一般コホモロジー"岩波書店. 240 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] A. Kono: "Characterization of the mod 3 cohomology of E7"Proc. AMS. to appear.

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] A. Kono: "On the cohomology of E8"J. Math. Kyoto Univ.. to appear.

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] A. Kono: "Commutativity of the group of self homotolpy classes of Lie groups"Bull. London Math. Soc.. to appear.

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] A. Kono: "On [X, U(n)] when dim X is 2n"J. Math. Kyoto Univ.. to appear.

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] A. Kono: "Topological characterrization of extensor product of BU"J. Math. Kyoto Univ.. to appear.

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K. Fukaya: "Mirror symmetry of abelian varieties and multi-theta functions"J. Algebraic Geom.. 11. 393-512 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] A. Kono: "General Cohomology"Iwanami Shoten. 240 (2002)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2004-04-14  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi