• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2002 Fiscal Year Final Research Report Summary

Pattern dynamics and asymptotic analysis in reaction-diffusion systems

Research Project

Project/Area Number 12440023
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field General mathematics (including Probability theory/Statistical mathematics)
Research InstitutionTohoku University

Principal Investigator

YANAGIDA Eiji  Tohoku University, Mathematical Institute, Professor, 大学院・理学研究科, 教授 (80174548)

Co-Investigator(Kenkyū-buntansha) EI Shin-ichiro  Yokohama City University, Graduate School of Integrated Science, Associate Profesor, 大学院・総合理学研究科, 助教授 (30201362)
SATO Tokushi  Tohoku University, Mathematical Institute, Research Assistant, 大学院・理学研究科, 助手 (00261545)
TAKAGI Izumi  Tohoku University, Mathematical Institute, Professor, 大学院・理学研究科, 教授 (40154744)
KUWAMURA Masataka  Kobe University, Faculty of Human Development, Associate Professor, 発達科学部, 助教授 (30270333)
Project Period (FY) 2000 – 2002
Keywordsreaction-diffusion system / activator-inthibitor system / skew-gradient systern / bifurcation / pattern formation / eigenvalue analysis / steady state / stability
Research Abstract

In this project, we study the following problems by combining analytical and numerical methods
(1) Applying the the theory of infinite dimensional dynamical systems, we show the spatial monetonicity of stable solutions in shadow systems. Also, we obtained a variational characterization of stable steady states for r skew-gradient reaction-diffusion systems
(2) We studied the stability of steady states in an activator-inhibitor system proposed by Gierer and Meinhardt. For annular domains, any steady state is stable if it has a local maximum at a point where the boundary of the domain has a maximum curvature
(3) Steady states of reaction-diffusion systems are obtained by solving associated elliptic boundary value problems. Here, we showed the existence and bifurcation of non-trivial solution for some nonlinear elliptic equations
(4) Complex pattern dynamics obsrved in reaction-diffusion systems can be understood in terms of weak or strong interaction of localized pulses. We studied the dynamics by using asymptotic methods
(5) Activator-inhibitor systems in morphogenesis, Swift-Hohenberg equation for thermal convection, etc. can be formulated in terms of gradient or skew-gradient systems. For such systems, we showed that the Eckhaus and zigzag zigzag instabilities can be observed generically for striped Patterns

  • Research Products

    (13 results)

All Other

All Publications (13 results)

  • [Publications] Wei-Ming Ni: "Monotonicity of stable solutions in shadow systems"Trans. Amer. Math. Soc.. 353. 5057-5069 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Eigi Yanagida: "Mini-maximizers in reaction-diffusion systems with skew-gradient structure"J. Differential Equations. 179. 311-335 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Eigi Yanagida: "Standing pulse solutions in reaction-diffusion systems with skew-gradient structure"J. Dynamics Differential Equations. 4. 189-205 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Wei-Ming Ni: "Stability of least energy patterns of the shadow system for an activator-inhibitor model"Japan J. Indust. Appl. Mathematics. 18. 259-272 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Shin-Ichiro Ei: "The motion of weakly interacting pulses in reaction-diffuison systems"J. Dynamics Differential equations. 14. 85-137 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M.Kuwamura: "The Eckhans and zigzag instability criteria in gradient/skew-gradient dissipative systems"Physica D. 175. 185-195 (2003)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 柳田英二, 栄伸一郎: "常微分方程式論"朝倉書店. 224 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] W.-M.Ni, P.Polacilc, E.Yanagida: "Monotonicity of stable soltutions in shadow systems"Trans.Amer.Math Soc. 353. 5057-5069 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] E.Yanagida: "Mini-maximizers in reaction-diffusion systems with skew-gradient structure"J. Diff. Eqs. 79. 311-335 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] E,Yanagida: "Standing pulse solutions in reaction-diffusion systems with skew-gradient structure"J. Dyn. Diff. Eqs. 4. 189-205 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] W.-M.Ni, I.Takagi, E.Yanagida: "Stability of least energy patterns of the shadow system for an activator-inhibitor model"Japan J. Indust. Appp. Math. 18. 259-272 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] S,-I,Ei: "The motion of weakly interacting pulses in reaction-diffusion systems"J.Dyn. Diff.Eqs. 14. 85-137 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M.Kuwamura, Eiji Yanagida: "The Eckhaus and zigzag instability criteria in gradient/skew-gradient dissipative systems"Physica D. 175. 185-195 (2003)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2004-04-14  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi