• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2002 Fiscal Year Final Research Report Summary

Mathematical Analysis of helical waves arising in some-reaction diffusion systems

Research Project

Project/Area Number 12440032
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field General mathematics (including Probability theory/Statistical mathematics)
Research InstitutionRyukoku University

Principal Investigator

IKEDA Tsutomu  Ryukoku University, Faculty of Science and Technology, Professor, 理工学部, 教授 (50151296)

Co-Investigator(Kenkyū-buntansha) NINOMIYA Hirokazu  Ryukoku University, Faculty of Science and Technology, Associated Professor, 理工学部, 助教授 (90251610)
MORITA Yoshihisa  Ryukoku University, Faculty of Science and Technology, Professor, 理工学部, 教授 (10192783)
IKEDA Hideo  Toyama University, Faculty of Science, Professor, 理学部, 教授 (60115128)
NAGAYAMA Masaharu  Kyoto University, Research Institute for Mathematical Sciences, Research Assistant, 数理解析研究所, 助手 (20314289)
SAKAI Kazushige  Ryukoku University, Faculty of Science and Technology, Research Assistant, 理工学部, 助手 (00288664)
Project Period (FY) 2000 – 2002
Keywordsself-propagating high-temperature syntheses / planar traveling wave / planar pulsating wave / regular helical wave / irregular helical wave / wave patterns / apparent activation energy / bifurcation theory
Research Abstract

A helical wave is observed in self-propagating high-temperature syntheses (SHS), for instance. One can create a high-quality uniform product by the SHS when a combustion wave keeps its profile and propagates at a constant velocity. When experimental conditions are changed, however, the planar traveling wave may lose its stability and give place some non-uniform ones. Actually, a planar pulsating wave appears through the Hopf bifurcation of planar traveling wave. Moreover, we observe a wave that propagates in the form of spiral encircling the cylindrical sample with several reaction spots. This wave is called a helical wave since it has been shown by our 3D numerical simulation that the isothermal surface of the wave has some wings and it helically rotates down as time passes on. Similar helical waves are observed also in propagation fronts of polymerizations in laboratory and they are obtained also by numerical simulation of some autocatalytic reactions as well as the SHS.
We have been studied the existing condition of helical wave and the transition process of wave patterns from traveling mode to pulsating mode and/or helical mode, and we have obtained the following results:
1. A stable helical wave can bifurcate directly from a planar traveling wave.
2. Even if a traveling wave is stable in R, the corresponding planar traveling wave can be unstable in the band domain as well as in the cylindrical domain, and a helical wave takes the place of planar traveling wave.
3. There are no stable helical wave when the band width L is small or the radius R of cylindrical domain is small.
4. Helical waves with different numbers of reaction spots can coexist stably.

  • Research Products

    (21 results)

All Other

All Publications (21 results)

  • [Publications] 池田 勉: "燃焼合成反応におけるヘリカル波"応用数理. 11. 40-48 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] S.Jimbo: "Ginzburg-Landau Equation with Magnetic Effect in a Thin Domain"Calc.Var.Partial Differential Equations. 15. 325-352 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Y.Kabeya: "Imperfect bifurcations arising from elliptic boundary value problems"Nonlinear Anal.Ser.A : Theory Methods. 48. 663-684 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] K.Sakai: "Phase field model for phase transformations of multi-phase and multi-component alloys"Journal of Crystal Growth. 237-239. 144-148 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M.Nagayama: "Three-dimensional numerical simulation of helically propagating combustion waves"J.of Material Synthesis and Processing. 9. 153-163 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Nishida: "Pattern formation of heat convection problems"Lecture Notes in Computational Sciences and Engineering. 19. 209-218 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T. Ikeda: "Helical Combustion waves in self-propagating high-temperature syntheses (in Japanese)"Bulletin of the Japan Society for Industrial and Applied Mathematics. 11-2. 40-48 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] S. Jimbo: "Ginzburg-Landau Equation with Magnetic Effect in a Thin Domain"Calc. Var. Partial Differential Equations. 15. 325-352 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Y. Kabeya: "Imperfect bifurcations arising from elliptic boundary value problems"Nonlinear Anal. Ser. A: Theory Methods. 48. 663-684 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K. Sakai: "Phase field model for phase transformations of multi-phase and multi-component alloys"Journal of Crystal Growth. 237-239. 144-148 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M. Nagayama: "Three-dimensional numerical simulation of helically propagating combustion waves"J. of Material Synthesis and Processing. 9. 153-163 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T. Nishida: "Pattern formation of heat convection Problems"Lecture Notes in Computational Sciences and Engineering. 19. 209-218 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H. Ikeda: "Multiple travelling wave solutions of three-component systems with competition and diffusion"Methods and Applications of Analysis. 8. 479-496 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Y. Morita: "Symmetry Breaking Homoclinic Bifurcations in Diffusively Coupled Equations"J. Dynamics and Differential Equations. 13. 613-649 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H. Ninomiya: "Stability of traveling curved fronts in a curvature flow with driving force"Methods Appl. Anal.. 8-3. (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] D. Hilhorst: "Imperfect bifurcations arising from elliptic boundary value problems"Nonlinear Anal., Ser. A: Theory Methods. 48-5. 663-684 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Y. Hayashima: "A camphor oscillates while breaking Symmetry"Journal of Physical Chemistry B. 105-22. 5353-5357 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M. I. Kohira: "Synchronized self-motion of two camphor boats"Langmuir. 17. 7124-7129 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M. Nagayama: "On the interior layer appearing in the similarity solutions of the Navier-Stokes equations"Jpn. J. Indast. Appl. Math.. 19-2. 277-300 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] S.-I. Ei: "Pulse-pulse interaction in Reaction-Diffusion system"Physics D. 165. 176-198 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M. Mimura: "Non-annihilation of traveling pulses in reaction-diffusion systems"Methods and Applications of Analysis. (to appear in).

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2004-04-14  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi