• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2002 Fiscal Year Final Research Report Summary

Behavior of spatial critical points and zeros of solutions of partial differential equations

Research Project

Project/Area Number 12440042
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field Basic analysis
Research InstitutionEhime University

Principal Investigator

SAKAGUCHI Shigeru  Ehime University, Faculty of Science, Professor, 理学部, 教授 (50215620)

Co-Investigator(Kenkyū-buntansha) IKEHATA Masaru  Gunma University, Faculty of Engineering, Professor, 工学部, 教授 (90202910)
HASHIMOTO Takahiro  Ehime University, Faculty of Science, Instructors, 理学部, 助手 (60291499)
YANAGI Shigenori  Ehime University, Faculty of Science, Associate Professor, 理学部, 助教授 (10253296)
Project Period (FY) 2000 – 2002
Keywordsheat equation / hot spot / isothermic surface / symmetry / initial-Dirichlet problem / sphere / hypersurface / polygon
Research Abstract

1. Let Ω be a domain in the N-dimensional Euclidean space, and consider the initial-Dirichlet problem for initial data being a positive constant. Suppose that D is a domain satisfying the interior cone condition and D^^-⊂Ω. We considered the question how the boundary ∂D is a stationary isothermic surface of the solution, and obtained the following two theorems : (i) Let Ω be either a bounded domain or an exterior domain satisfying the exterior sphere condition. If ∂D is a stationary isothermic surface, then ∂Ω must be a sphere. (ii) Let Ω be an unbounded domain satisfying the uniform exterior sphere condition, and suppose that ∂Ω contains a nonempty open subset where the principal curvatures of ∂Ω with respect to the exterior normal direction to ∂Ω are nonnegative. Furthermore, assume that, for any r > 0, ∂Ω contains the graph over a (N -1)-dimensional ball with radius r > 0. If ∂D is a stationary isothermic surface, then ∂Ω must be either a hyperplane or two parallel hyperplanes.
2. Th … More ere is a conjecture of Chamberland and Siegel (1997) concerning the hot spots of solutions of the heat equation. Let Ω be a bounded domain in the Euclidean space containing the origin, and consider the initial-Dirichlet problem for initial data being a positive constant. The conjecture stated that if the origin is a stationary hot spot, then Ω is invariant under the action of an essential subgroup G of orthogonal transformations. Concerning this conjecture, we obtained the following four theorems when the space dimension is two : (i) Let Ω be a triangle. If the origin is a stationary hot spot, then Ω must be an equilateral triangle centered at the origin. (ii) Let Ω be a convex quadrangle, then Ω must be a parallelogram centered at the origin. (iii) If the origin is a stationary hot spot, then Ω is not a non-convex quadrangle. (iv) Let Ω be a convex m-polygon ( m = 5 or 6 ). Suppose that the inscribed circle centered at the origin touches every side of Ω, and suppose that the origin is a stationary hot spot. Then, if m = 5, Ω must be a regular pentagon centered at the origin, and if m = 6, Ω must be invariant under the rotation of one of three angles, π/3, 2π/3, and π. Less

  • Research Products

    (12 results)

All Other

All Publications (12 results)

  • [Publications] S.Sakaguchi: "Stationary critical points of the heat flow in spaces of constant curvature"Journal London Mathematical Society. 63. 400-412 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] R.Magnanini, S.Sakaguchi: "Stationary critical points of the heat flow in the plane"Journal d'Analyse Mathematique. 88. 383-396 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] R.Magnanini, S.Sakaguchi: "Matzoh ball soup: Heat conductors with a stationary isothermic surface"Annals of Mathematics. 156. 931-946 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] R.Magnanini, S.Sakaguchi: "On heat conductors with a stationary hot spot"Annali di Matematica pura ed applicata. (発表予定).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 坂口 茂: "拡散方程式の解の空間臨界点と零点の挙動"数学. 54. 249-264 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] S.Sakaguchi: "Behavior of spatial critical points and zeros of solutions of diffusion equations"Sugaku Expositions. (発表予定).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] S.Sakaguchi: "Stationary critical points of the heat flow in spaces of constant curvature"Journal London, Mathematical Society. 63-2. 400-412 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] R.Magnanini and S.Sakaguchi: "Stationary critical points of the heat flow in the plane"Journal d'Analyse Mathematique. 88. 383-396 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] R.Magnanini and S.Sakaguchi: "Matzoh ball soup : Heat conductors with a stationary isothermic surface"Annals of Mathematics. 156-3. 931-946 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] R.Magnanini and S.Sakaguchi: "On heat conductors with a stationary hot spot"Annali di Matematica pura ed applicata. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] S.Sakaguchi: "Behavior of spatial critical points and zeros of solutions of diffusion equations"Sugaku (Japanese). 54-3. 249-264 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] S.Sakaguchi: "Behavior of spatial critical points and zeros of solutions of diffusion equations"Sugaku Expositions (English translation). (to appear).

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2004-04-14  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi