• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2002 Fiscal Year Final Research Report Summary

Joint design of model set identification and learning type control

Research Project

Project/Area Number 12450171
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field Control engineering
Research InstitutionKYOTO UNIVERSITY

Principal Investigator

SUGIE Toshiharu  Graduate School of Informatics, Professor, 情報学研究科, 教授 (80171148)

Co-Investigator(Kenkyū-buntansha) FUJIMOTO Kenji  Graduate School of Informatics, Research Associate, 情報学研究科, 助手 (10293903)
OSUKA Koichi  Graduate School of Informatics, Associate Professor, 情報学研究科, 助教授 (50191937)
Project Period (FY) 2000 – 2002
Keywordsmodel-set identification / learning control / mechanical systems / nonlinear control
Research Abstract

As for the joint design of model-set identification and learning type control, we have obtained the following results.
Concerning to the model-set identification, one of the difficulties is that the framework of model set-identification is not consistent with the traditional stochastic approach of parameter identification. As a result, the obtained model set tends to be conservative. We have proposed identification methods which obtain model sets by taking the stochastic properties such as independency between noises and output signals into account. This overcomes the shortcoming partially. The effectiveness is evaluated through experiments using flexible structures.
Next, we have considered a class of nonlinear systems which are called Hamiltonian systems. This class contains a combination of mechanical systems and electrical systems. We have clarified that the inherent structures such as passivity and adjoint systems, which form a basis of applicability of learning control to this class of systems.
As for learning control, major demerits of the existing methods is that they have to use differential of error signals when the precise knowledge of the plants is not available. We have solved this problem in a couple of ways. One is to restrict the input space into a prescribed finite input signals when we adopt an iterative learning control, which turns out to be related to model identification very closely. The other is to use I/O signals of the adjoint systems of Hamiltonian systems in order to calculate its gradient with respect to given cost functions. The point here is that we can achieve this without any model parameters. The usefulness of both methods are demonstrated through experiments using nonlinear manipulators. We also have developed a new method of iterative feedback tuning which is robust against frictions.
The development of more effective way of combining learning control with model-set identification is left as a future research work.

  • Research Products

    (12 results)

All Other

All Publications (12 results)

  • [Publications] 福島宏明, 杉江俊治: "相関法に基づく最悪ケース1_1同定"システム制御情報学会論文誌. 13・11. 487-493 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 福島宏明, 杉江俊治: "雑音の統計的性質を考慮したモデル集合同定"計測と制御. 39・12. 743-748 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 大須賀公一, 松野文俊: "マニピュレータにおける受動性のロバスト性について"日本ロボット学会誌. 19・1. 75-80 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] K.Hamamoto T.Sugie: "An iterative learning control algorithm within prescribed input-output subspace"Automatica. 37・11. 1803-1809 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] K.Hamamoto T.Sugie: "Iterative learning control for robot manipulators using the finite dimensional input subspace"IEEE Trans. on Robotics and Automation. 18・4. 632-635 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] K.Fujimoto, H.Kakiuchi T.Sugie: "Iterative learning control of Hamiltonian systems"Proc. the 41st IEEE Canference on Decision and Cantrol. 3344-3349 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] H. Fukushima, T. Sugie: "Worst-case l-1 identification based on correlation analysis"Journal of the Society of Instrument and Control Engineers. 12. 743-748 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H. Fukushima, T. Sugie: "Model set identification based on statistical properties of noises"Journal of the Society of Instrnmemt and Control Engineers. 12. 743-748 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K. Osuka, F. Matsuno: "On robustness of passivity of manipulator"Journal of the Robotics Society of Japan. 19. 75-80 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K. Hamamoto, T. Sugie: "An iterative learning control algorithm within prescribed input-output subspace"Automatica. 31-11. 1803-1809 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K. Hamamoto, T. Sugie: "Iterative learning control for robot manipulators using the finite dimensional input subspace"IEEE Trans. on Robotics and Automation. 18-4. 632-635 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K. Fujimoto, H. Kakiuchi, T. Sugie: "Iterative learning control of Hamiltonian systems"Proc. the 41st IEEE Conference on Decision and Control. 3344-3349 (2002)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2004-04-14  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi