• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2002 Fiscal Year Final Research Report Summary

Studies on agebraic geometry in positive characteristic, coding theory and cryptography

Research Project

Project/Area Number 12554001
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section展開研究
Research Field Algebra
Research InstitutionThe University of Tokyo

Principal Investigator

KATSURA Toshiyuki  The University of Tokyo, Graduate School of Mathmatical Sciences, Professor, 大学院・数理科学研究科, 教授 (40108444)

Co-Investigator(Kenkyū-buntansha) TERASOMA Tomohide  The University of Tokyo, Graduate School of Mathmatical Sciences, Associate. Professor, 大学院・数理科学研究科, 助教授 (50192654)
OKAMOTO Kazuo  The University of Tokyo, Graduate School of Mathmatical Sciences, Professor., 大学院・数理科学研究科, 教授 (40011720)
OKAMOTO Tatsuaki  NTT, Institute on Information Sharing Laboratory, Chief Researcher., 情報流通プラットフォーム研究所, 主席研究員
TAKAYAMA Nobuki  Kobe University, Faculty of Sciences, Professor, 理学部, 教授 (30188099)
KATO Akishi  The University of Tokyo, Graduate School of Mathmatical Sciences, Associate Professor., 大学院・数理科学研究科, 助教授 (10211848)
Project Period (FY) 2000 – 2002
KeywordsPositive characteristic / Artin-Mazur formal group / Cartier operator / Moduli space / Chow group / Calabi-Yau variety / Abelian surface / Cryptography
Research Abstract

Let M be the moduli stack of principally polarized abelian surfaces over an algebraically closed field κ of positive characteristic, and let π: X ―― M be the universal family. For an integer h, we set M^<(h)> = {X ∈ M | height Φx 【greater than or equal】 h}. Take the point x ∈ M which correspoads to a principally polarized abelian surface (A,D,σ), and assume that the height h of the formal Brauer group Φ>_A is finite. Then, we could prove that Im H^1(A, Z_h) = 7 - h and that the tangent space of M^<(h)> at x is isomorphic to {Im H^1(A,Z_h)}∩D^〓 ⊂ H^1(A,Ω^1_A). Now, let X be an nonsingular complete algebraic variety over k of dimension n, and let H_μR(X) be the de Rham cohomology group of X. Then, H_<dR>(X) has the Hodge fltration H_<dR>(X) = F_0 ⊃ F_1 ⊃ … ⊃ F_n and the Frobenius mapping F acts on H_<dR>(X). We define the a-number by a(X) = max{i | F^*H_<dR>(X) ⊂ F_i}. We can show that for an abelian variety X this number coincides with the a-number defined by F. Oort. If the Hodge to de Rham spectral sequence degenerates at E_1-level, then F^* induces a mapping H^n(X,Ox) = F_0/F_1 ―― H_<dR>(X). Therefore, we have a(X) = max{i | F^*H^n(X,Ox) ⊂ F_i} and we can compute this number for various varieties. We also make clear the relation between the a-number and the height h of the Artin-Mazur formal group. Finally, for a Calabi-Yau variety X of dimension n 【greater than or equal】 3, we showed that the natural homomorphism NS(X)/pNS(X) OF_p k ―― H^1(Ω^1_X) ⊂ H^2_<dR>(X) is iujective under the assumption H^0(X,Ω^i_X) = 0 (i = 1, 2). As for the cryptography, T. Okamoto et al. gave a precise proof on the security of the public-key cryptosystem which is called RSA-OAEP.

  • Research Products

    (12 results)

All Other

All Publications (12 results)

  • [Publications] G.van der Geer: "On a stratification of the moduki of K3 surfaces"J. Eur. Math. Soc.. 2. 259-290 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] G.van der Geer: "Formal Brauer groups and a stratification of the moduli of abelian surfaces"Progress in Math.. 195. 185-201 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] G.van der Geer: "An invariant for varieties in positive characteristic"Contemporary Math.. 300. 131-141 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 桂 利行: "デジタルと符号理論"数学通信,日本数学会. 6-1. 4-15 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 桂 利行: "デジタルの数学"数学のたのしみ. 21. 54-65 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Okamoto: "The Gap-Problems : a New Class of Problems for the Security of Cryptographic Schemes"The proceedings of PKC'01, LNCS. 1992. 104-118 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] G. van der Geer and T, Katsura: "On a stratification of the moduli of K3 surfaces"J. Eur. Math. Soc.. 2. 259-290 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] G. van der Geer and T. Katsura: "An invariant for varieties in positive characteristic"Contemporary Math.. 300. 131-141 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T. Katsura: "Digit and coding theory (in Japanese)"Sukaku-tsushin. 6-1. 4-15 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T. Katsura: "Mathematics for digital machine (in Japanese)"Have fun with mathematics. 21. 54-65 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] G. van der Geer and T. Katsura: "Formal Brauer groups and a stratification of the moduli of abeiian surfaces in Moduli of Abelian Varieties, Proc. of Intl. Conf. in Texel, 1999, Progress in Math. 195"Birkhauser. 185-202 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T. Okamoto and D. Pointcheval: "The Gap-Problems : a New Class of Problems for the security of Cryptographic Schemes , The proceedings of PKC'01, LNCS 1992"Springer-Verlag. 104-118 (2001)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2004-04-14  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi