• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2003 Fiscal Year Final Research Report Summary

Continued fraction expansions in terms of discrete integrable systems and their applications to systems identifications and the BCH-Goppa decoding

Research Project

Project/Area Number 12554004
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section展開研究
Research Field General mathematics (including Probability theory/Statistical mathematics)
Research InstitutionKYOTO UNIVERSITY (2001-2003)
Osaka University (2000)

Principal Investigator

NAKAMURA Yoshimasa  Kyoto University, Graduate School of Informatics, Professor, 情報学研究科, 教授 (50172458)

Co-Investigator(Kenkyū-buntansha) IMAI Jun  NTT Communication Science Laboratories, Researcher, コミュニケーション科学基礎研究所, 主任研究員
NAKAYAMA Isao  Nagoya University of Commerce & Business, Faculty of Management Information Science, Professor, 経営情報学部, 教授 (80164359)
SHIROTA Norihisa  Sony Corporation, Laboratories for Information & Network, Manager, インフォメーション&ネットワーク研究所, 統括部長
KONDO Koichi  Doshisha University, Faculty of Engineering, Lecturer, 工学部, 専任講師 (30314397)
OKAZAKI Ryotaro  Doshisha University, Faculty of Engineering, Lecturer, 工学部, 専任講師 (20268113)
Project Period (FY) 2000 – 2003
Keywordsdiscrete integrable systems / continued fractions / Pade approximation / Painleve equations / Laplace transform / applied integrable systems
Research Abstract

There has not been known a continued fraction expansion of order O(N^2) for the Perron continued fraction, which emerges in the Carathe\'odory interpolation problem, such as the qd algorithm for the Chebyshev continued fraction. First Nakamura and coworkers, being based on the orthogonal polynomials on the unit circle, derived a new integrable system named the Schur flow which has a Lax representation given by the three terms recurrence relation. Secondly in terms of the discrete Schur flow they designed a new continued fraction expansion algorithm of order O(N^2) for the Perron continued fraction and its application to algorithm for computing zeros of certain algebraic equations. Consequently, the new correspondence
1)classical orthogonal polynomials -Chebyshev continued fraction -Toda equation
2)orthogonal polynomials on the unit circle -Perron continued fraction -Schur flow
is revealed.
They also considered the Thron continued fraction through the relativistic Toda equation having a Lax representation given by the three terms recurrence relation for the bi-orthogonal polynomials. An integrable discretization of the equation enable them to design a new continued fraction algorithm of order O(N^3) for the Thron fraction. This algorithm has an advantage that it computes the continued fraction for the case where the FG algorithm does not work.
Nakamura showed that a Pad\'e approximation, namely, a continued fraction expansion of the Laplace transform of the Airy function can be computed in a pure algebraic manner.
Each coefficients of the continued fraction is connected by the By\"acklund transformation of the second Painlev\'e equation PII, where one of the Lax pair is just the recurrence relation of orthogonal polynomials.

  • Research Products

    (26 results)

All Other

All Publications (26 results)

  • [Publications] A.Mukaihira, Y.Nakamura: "Integrable discretization of the modified KdV equation and applications"Inverse Problems. Vol.16. 413-424 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] S.Tsujimoto, Y.Nakamura, M.Iwasaki: "Discrete Lotka-Volterrs system computes singular values"Inverse Problems. Vol.17. 53-58 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] A.Mukaihira, Y.Nakamura: "Schur flow for orthogonal polynomials on the unit circle and its integrable discretization"Journal of Computational and Applied Mathematics. Vol.139. 75-94 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Y.Minesaki, Y.Nakamura: "The discrete relativistic Toda molecule equation and a Pad\'e approximation algorithm"Numerical Algorithms. Vol.27. 219-235 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Y.Nakamura: "Continued fractions and integrable systems"Centre de Recherches Math'ematiques Proceedings & Lecuture Notes. Vol.31. 153-163 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] K.Kondo, Y.Nakamura: "Determinantal solutions of solvable chaotic systems"Journal of Computational and Applied Mathematics. Vol.145. 361-372 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Y.Minesaki, Y.Nakamura: "A new discretization of the Kepler motion which conserves the Runge-Lenz vector"Physics Letters A. Vol.306. 127-133 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M.Iwasaki, Y.Nakamura: "Convergence of solution of the discrete Lotka-Volterra system"Inverse Problems. Vol.18. 1569-1578 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M.Iwasaki, Y.Nakamura: "An application of the discrete Lotka-Volterra system with variable step-size to singular value computation"Inverse Problems. Vol.20. 553-563 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Y.Minesaki, Y.Nakamura: "A new conservative numerical integration algorithm for the three-dimensional Kepler motion based on the Kustaanheimo-Stiefel regularization theory."Phys.Lett.A. Vol.324. 282-292 (2004)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Y.Minesaki, Y.Nakamura: "A conservative numerical integration algorithm for the integrable Henon-Heiles system"Proceedings of Institute of Mathematics of NAS of Ukraine, Institute of Mathematics, Kyiv. Vol.I. 444-449 (2004)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Y.Nakamura, A.Zhedanov: "Special solutions of the Toda chain and combinatorial numbers"J.Phys.A, Math.Gen.. (To appear). (2004)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 中村 佳正編著: "可積分系の応用数理(第5章 可積分系アルゴリズム;中村執筆分担)pp.171-223"裳華房. 319 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 甘利俊一, 外山敬介編: "脳科学大事典(9.3節 主成分分析;中村執筆分担)pp.821-823"朝倉書店. 1007 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] A.Mukaihira, Y.Nakamura: "Integrable discretization of the modified KdV equation and applications"Inverse Problems. 16. 413-424 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] S.Tsujimoto, Y.Nakamura, M.Iwasaki: "Discrete Lotka-Volterra system computes singular values"Inverse Problems. 17. 53-58 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] A.Mukaihira, Y.Nakamura: "Schur flow for orthogonal polynomials on the unit circle and its integrable discretization"Journal of Computational and Applied Mathematics. 139. 75-94 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Y.Minesaki, Y.Nakamura: "The discrete relativistic Toda molecule equation and a Pad\'e approximation algorithm"Numerical Algorithms. 27. 219-235 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Y.Nakamura: "Continued fractions and integrable systems"Centre de Recherches Math'ematiques Proceedings & Lecture Notes. 31. 153-163 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K.Kondo, Y.Nakamura: "Determinantal solutions of solvable chaotic systems"Journal of Computational and Applied Mathematics. 145. 361-372 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Y.Minesaki, Y Nakamura: "A new discretization of the, Kepler motion which conserves the Runge-Lenz vector"Physics Letters A. 306. 127-133 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M.Iwasaki, Y.Nakamura: "Convergence of solution of the discrete Lotka-Volterra system"Inverse Problems. 18. 1569-1578 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M.Iwasaki, Y.Nakamura: "An application of the discrete Lotka-Volterra system with variable step-size to singular volue computation"Inverse Problems. 20. 553-563 (2004)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Y.Minesaki, Y.Nakamura: "A new conservative numerical integration algorithm for the three-dimensional Kepler motion based on the Kustaanheimo-Stiefel regularization theory"Phys.Lett.A. 324. 282-292 (2004)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Y.Minesaki, Y.Nakamura: "A conservative numerical integration algorithm for the integrable Henon-Heiles system"Proceedings of Institute of Mathematics of NAS of Ukraine, Part I (Institute of Mathematics, Kyiv). 444-449 (2004)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Y.Nakamura, A.Zhedanov: "Special solutions of the Toda chain and combinatorial numbers"J.Phys.A, Math.Gen.(to appear).

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2005-04-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi