• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2001 Fiscal Year Final Research Report Summary

Research on the representations of cyclotomic Hecke algebras and finite algebraic groups of classical type

Research Project

Project/Area Number 12640016
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionTokyo University of Mercantile Marine

Principal Investigator

ARIKI Susumu  Tokyo University of Mercantile Marine, 商船学部, 助教授 (40212641)

Project Period (FY) 2000 – 2001
Keywordsfinite representation type / Hecke algebra / decomposition numbers / Fock space / crystal basis / canonical basis
Research Abstract

We have determined when a Hecke algebra has finite representation type. In classical types, the case where the Hecke algebra has type B is essential, and the result in this case is based on the theory which I explained in my book published in 2000, in the project term (Exceptional types were settled by Hyoue Miyachi)
More precisely, using Morita equivalence theorem of Dipper and Mathas the proof is reduced to the case where a two-parameter Hecke algebra of type B has 1 and q^f as the parameters. Then we obtain certain decomposition numbers by the computation of some canonical basis elements. We combine this with Specht module theory and the theory of Artinian algebras. As a result we have a necessary and sufficient condition n<min (e, 2f+4, 2e-2f+4) where q is a primitive eth root of unity. Results for Hecke algebros of classical type are obtained as a Corollary of this result. Related to this project, I also published papers one on the result that λ : Kleshchev<->D^λ*0 the other on combinatorios and crystal.
Moreover, I've completed the English translation of the book mentioned above. This will be published by the American Mathematical Society.

  • Research Products

    (10 results)

All Other

All Publications (10 results)

  • [Publications] S.Ariki, A.Mathas: "The number of simple modules of the Hecke algebias of type G(r.l.n)"Math. Zeit. 233. 601-623 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] S.Ariki: "Rubinson-Schensted corrsepondence and leftcells"Adv. Stud. in Pure Math. 28. 1-20 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] S.Ariki: "Some remarkes on A_1^<(1)> soliton cellular automata"J. Math. Sci. Univ. Tokyo. 8. 143-156 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] S.Ariki: "On the classification of simple modules for cyclotomic Hecke algebars of type G(m, l, n)"Osaka J. Math.. 38. 827-837 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 有木 進: "上智大学"A_<r-1>^<(1)>型量子群の表現論と組み合わせ論. 153 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] S. Ariki and A. Mathas: "The number of simple modules of the Hecke algebras of type G(r.j.n)"Math Zeit. 233. 601-623 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] S. Ariki: "Robinson-Schensted correspondence and left cells"Adv. Stud. Pure Math.. 28. 1-20 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] S. Ariki: "Some remarks on Ai soliton cellular automata"J. Math. Sci. Unikv. Tokyo. 8. 143-156 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] S. Ariki: "On the classification of simple modules for cyclotomic Hecke algebras of type G(m,j.n)"Osaka J. Math.. 38. 827-837 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] A. Ariki: "Reprentations of Quantum Algebras of tyep Am and Combinations of Young Tableaux"A.M.S. (to appear) (English) Sophia Univ. 2000 (Japanese).

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2003-09-17  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi