• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2002 Fiscal Year Final Research Report Summary

The study of vector bundles on an algebraic manifold with the trivial canonical bundle

Research Project

Project/Area Number 12640024
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionKOBE UNIVERSITY

Principal Investigator

YOSHIOKA Kota  Kobe University Faculty of Science Associate Professor, 理学部, 助教授 (40274047)

Co-Investigator(Kenkyū-buntansha) YAMADA Yasuhiko  Kobe University Faculty of Science Professor, 理学部, 教授 (00202383)
SAITO Masahiko  Kobe University Faculty of Science Professor, 理学部, 教授 (80183044)
Project Period (FY) 2000 – 2002
Keywordsvector bundle / K3 surface / abelian surface / Fourier-Mukai transform / Painleve equation
Research Abstract

Yoshioka find the condition for the existence of stable sheaves on K3 and abelian surfaces and showed the connectedness of the moduli spaces. If the moduli space is compact, then he determined the albanese map and showed that the fiber is a hyperkaehler manifold. Moreover he showed that the deformation type of the manifold is determined by the dimension. By this result, the study of the topological type of the moduli space is reduced to the rank 1 case. In order to get these results, he used the Fourier-Mukai transform and the deformation of the underlying K3 surfaces. Hence he also studied the relation between the stability and the Fourier-Mukai transform. Moreover he studied the moduli of stable sheaves on an elliptic surface, surface components of the moduli of stable sheaves on a K3 surface and the Gromov-Witten invariants and got some results.
Saito studied Gopakumar-Vafa conjecture on BPS states. He proposed a mathematical definition of the BPS invariants by using the moduli of purely 1-dimensional sheaves and checked the consistency for some cases.
Yamada studied D-brane on a rational elliptic surface. Mathematical beautiful structures such as monodromy group, Mordell-Weil group, affine Weyl group are studied from the Physical point of view.
Saito and yamada studied the Painleve equation in terms of the symmetry and the geometry. In particular, Saito showed that the Backlund transform is the flop in the birational geometry and the Painleve equation is derived from the deformation theory of a rational surface, which has an application of the classification of the Riccati solution.

  • Research Products

    (15 results)

All Other

All Publications (15 results)

  • [Publications] T.Kawai: "String partition functions and infinite products"Adv.Theor.Math.Phys.. 4. 397-485 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] K.Yoshioka: "Moduli spaces of stable sheaves on abelian surfaces"Mathematische Annalen. 321. 817-884 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] K.Yoshioka: "Twisted stability and Fourier-Mukai transform I"Compositio math.. (出版予定). (2003)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] K.Yoshioka: "A Twisted stability and Fourier-Mukai transform II"Manuscripta Math.. (出版予定). (2003)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] K.Yoshioka: "A note on moduli of vector bundles on rational surfaces"I.Math. Kyoto Univ.. (出版予定). (2003)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Saito, M-H.: "Deformation of Okamoto-Painleve Pairs and Painleve equations"Jour. of Algebraic Geometry. 11. 311-362 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T. Kawai, and K. Yoshioka: "String partition functions and infinite products"Adv. Theor. Math. Phys.. 4. 397-485 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K. Yoshioka: "Moduli spaces of stable sheaves on abelian surfaces"Mathematische Annalen. 321. 817-884 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K. Yoshioka: "Twisted stability and Fourier-Mukai transform I"Compositio Math.. to appear.

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K. Yoshioka: "Twisted stability and Fourier-Mukai transform II"Manuscripta Math.. to appear.

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K. Yoshioka: "A note on moduli of vector bundles on rational surfaces"J. Math. Kyoto Univ.. to appear.

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Saito, M-H.: "Deformation of Okamoto-Painleve Pairs and Painleve equations"Jour. of Algebraic Geometry. 11. 311-362 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Hosoho, S., Saito M-H., Takahashi, A.: "Relative Lefschetz action and BPS state counting"Internat. Math. Res. Notices. No. 15. 783-816 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Fukae, M., Yamada, Y., Yang, S.: "Mordell-Weyl lattice via string junctions"Nuclear Phys. B. 572. 71-94 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Noumi, M., Takano, K., Yamada, Y.: "Backlund transformations and the manifolds of Painleve systems"Funkcial. Ekavac.. 45. 237-258 (2002)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2004-04-14  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi