• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2002 Fiscal Year Final Research Report Summary

Research on Dutta multiplicity and Roberts ring

Research Project

Project/Area Number 12640032
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionTokyo Metropolitan University

Principal Investigator

KURANO Kazuhiko  Tokyo Metropolitan University Graduate School of Science Associate Professor, 大学院・理学研究科, 助教授 (90205188)

Co-Investigator(Kenkyū-buntansha) KAMOI Yuji  Meiji University School of Commerce Lecturer, 商学部, 専任講師 (80308064)
KAWASAKI Takesi  Tokyo Metropolitan University Graduate School of Science Assistant, 大学院・理学研究科, 助手 (40301410)
TERAO Hiroaki  Tokyo Metropolitan University Graduate School of Science Professor, 大学院・理学研究科, 教授 (90119058)
Project Period (FY) 2000 – 2002
KeywordsRiemann-Roch formula / Grothendieck group / Chow group / local rings / Todd classes / Adams operation
Research Abstract

1. We proved that the positivity problem of intersection multiplicity had a deep relation with the positivity of Dutta multiplicity. The Dutta multiplicity of a complex is a rational number that was defined by Dutta in the case of positive characteristic. We defined the Dutta multiplicity without the assumption on the characteristic. Using Adams operation for complexes (due to Gillet-Soule), we succeeded to describe the Dutta multiplicity and prove the positivity in some special cases. We also gave another description of Dutta multiplicity without using K-theory.
2. The key point of the proof of the vanishing of intersection multiplicity due to Roberts is the vanishing of Todd classes of local rings. The Todd classes of local rings are very interesting, but it is very difficult to calculate concrete examples. We succeeded to give an formula on Todd classes of local rings in some special cases. Using it, we calculate some examples. We found that there are many examples that satisfy the vanishing of Todd classes, we call such rings Roberts rings. We studied basic properties on Roberts rings.
3. Flat morphisms of rings induces a map of Grothendieck groups. For a Northerian local ring, we studied a map between Grothendieck groups induced by the completion. More precisely, we studied when it is injective. We found some sufficient conditions for the injectivity. For example, it is injective if the given local ring is isolated singularity.

  • Research Products

    (12 results)

All Other

All Publications (12 results)

  • [Publications] K.Kurano: "Test modules to calculate Dutta Multiplicities"J.Alg.. 236. 216-235 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] K.Kurano: "On Roberts rings"J.Math.Soc.Japan. 53. 333-355 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Y.Kamoi: "On Chow groups of G-graded rings"Comm.Alg.. 31. 2141-2160 (2003)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Y.Kamoi: "On maps of Grothendieck groups induced by completion"J.Alg.. 254. 21-43 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] H.Terao: "Multiderivations of Coxeter arrangements"Invent.Math.. 148. 659-674 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Kawasaki: "On Arithmetic Macaulayfication of Noetherian Rings"Trans.Amer.Math.Soc.. 354. 123-149 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] K. Kurano: "Test modules to calculate Dutta Multiplicities"J. Alg.. 236. 216-235 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K. Kurano: "On Roberts rings"J. Math. Soc. Japan. 53. 333-355 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Y. Kamoi: "On Chow groups of G-graded rings"Comm. Alg.. 31. 2141-2160 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Y. Kamoi: "On maps of Grothendieck groups induced by completion"J. Alg.. 254. 21-43 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H. Terao: "Multiderivations of Coxeter arrangements"Invent. Math.. 148. 659-674 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T. Kawasaki: "On Arithmetic Macaulayfication of Noetherian Rings"Trans. Amer. Math. Soc.. 354. 123-149 (2002)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2004-04-14  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi