• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2002 Fiscal Year Final Research Report Summary

Construction of abelian equations and study of Gaussian sums

Research Project

Project/Area Number 12640047
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionWaseda University

Principal Investigator

HASHIMOTO Kiichiro  Waseda University, School of Science and Engineering, Professor, 理工学部, 教授 (90143370)

Co-Investigator(Kenkyū-buntansha) UMEGAKI Atsuki  Sophia Univ., Department of Math., Assistant, 理工学部, 助手 (60329109)
KOMATSU Keiichi  Waseda Univ., Department of Math.Sci., Professor, 理工学部, 教授 (80092550)
Project Period (FY) 2000 – 2002
Keywordsabelian equations / Inverse Galois Problem / Gaussian period / cyclic polynomial / Lehmer project / Galois group / period equation / cycle extension
Research Abstract

The main subject of our research project is the constructive sapect of the Inverse Galois theory, and our aim is to develop the systematic method to construct the family of abelian equations, which has been one of the central problems in number theory. In this research work we focused our interests to the case of cyclic equations. We proposed a new idea to make a geometric generalization of the so called Gaussian period relations in the theory of cyclotomy. Namely making use of the mechanism by which a cyclotomic polynomials give rise as irreducible polynomials of Gaussian periods, we introduced e independent variables y_0,【triple bond】y_<e-1> and constructed e^2 rational functions u_<ij> of y's, in the similar way as the cyclotomic numbers are defined. Then we proved that Q(y_0【triple bond】y_<e-1>) is a cyclic extension of Q(u'_<ij>s). By this way, we have succeeded to construct small degree e a parametric family of cyclic polynomials of degree e ; especially for e=7, we found, a simple family whose coefficients are integral polynomials in our parameter n with constant term n^7. This gives an essentially new development in the so called Lehmer project. We remark that this result gives also a partial answer to the famous 12th problem of Hilbert's, which requires to construct abelian extensions over given number field,

  • Research Products

    (10 results)

All Other

All Publications (10 results)

  • [Publications] K.Hashimoto, Y.Hasegawa, F.Momose: "Modularity conjecture for Q-curves and QM-curves"International J.Math.. 10-7. 1011-1036 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] K.Hashimoto, K.Miyake: "Inverse Galois Problem for Dihedral Groups"Number Theory and its Applications (Kluwer). 165-181 (1999)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] K.Hashimoto: "On Brumer's family of RM-curves of genus two"Tohoku Math.J.. 52. 475-488 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] K.Hashimoto, Y.Rikuna: "On Generic Families of Cyclic Polynomials with even Degree"Manuscripta Mathematica. 107. 283-288 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] K.Hashimoto: "Q-curves of rational j-invaritants and Jacobian surfaces of GL2-type"Proceedings of Conferences on Galois Theory and Modular Forms (Kluver). 36-61 (2003)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Fukuda, K.Komatsu: "An Application of Siegel modular functions to Kronecker's limit formula"LNCS. 2369. 108-119 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 橋本 喜一朗, (他9名): "数学七つの未解決問題"森北出版. 201 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] K.Hashimoto, Y.Rikuna: "On Generic Families of Cycle Polynomials with even Degree"Manuscripta Math.. 107. 283-288 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K.Hashimoto: "Q-curves with rational j-invariants and Jacobian surfaces of GL2-type"Proceedings of Conferences on Galois Theory and Modular Forms. (to appear). (2003)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.Fukuda, K.Komatsu: "An application of Siegel modular functions to Kronecker's limit formula"LNCS. 2369. 108-119 (2002)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2005-04-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi