• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2001 Fiscal Year Final Research Report Summary

The special values of the L function associated with automorphic forms

Research Project

Project/Area Number 12640049
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionRitsumeikan University

Principal Investigator

ISHII Hidenori  Ritsumeikan Univ., Fac. Science and Engineering, Professor, 理工学部, 教授 (60159671)

Co-Investigator(Kenkyū-buntansha) NARUKI Isao  Ritsumeikan Univ., Fac. Science and Engineering, Professor, 理工学部, 教授 (90027376)
NAKAJIMA Kazufumi  Ritsumeikan Univ., Fac. Science and Engineering, Professor, 理工学部, 教授 (10025489)
ARAI Masaharu  Ritsumeikan Univ., Fac. Science and Engineering, Professor, 理工学部, 教授 (20066715)
KAGAWA Takaaki  Ritsumeikan Univ., Fac. Science and Engineering, Associate Professor, 理工学部, 助教授 (90298175)
YAMADA Osanobu  Ritsumeikan Univ., Fac. Science and Engineering, Professor, 理工学部, 教授 (70066744)
Project Period (FY) 2000 – 2001
KeywordsAutomorphic forms / L-function / Hilbert cusp forms
Research Abstract

(1) In this research, we improved the previous results which concern between cups forms. To be precise, we prove the existence of primitive cusp form of arbitrary weight which is congruent to the cusp form of weight one which associated with ray class character of quadratic number field. This result is a generalization of previous theorem which is proved m 1981. Key of the proof is a study of the generalized Bernoulli numbers. Some integrality properties which concern with the Bernoulli numbers are newly proved. The primitivity is a result of previous research.
(2) Calculations of the eigenvalues of the Hecke operators in the space of Hilbert cusp forms over totally real number fields is died for sufficiently general fields. Therefore, the rational structure is studied. Numerical examples of the Hecke fields and the special values of twisted adjoin L functions are newly added which supports the conjecture of Doi-Hida-Ishii in invent. math. 1998
(3) Elliptic curves defined over some quadratic number fields with everywhere good reduction or small conductor are determined by T. Kagawa.
(4) O. Yamada give some results about the essential self-adointness of the Dirac operators.

  • Research Products

    (10 results)

All Other

All Publications (10 results)

  • [Publications] 加川 貴章: "non-existence of elliptic curves having everywhere good reduction and cubic discriminant"Proc.of Japan Acad.. 76. 141-142 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 加川 貴章: "Determination of elliptic curves with everywhere good reduction over real quadratic fields Q(√<3p>)"Acta Arith.. 96. 231-245 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 加川 貴章: "Elliptic curves over Q(√<2>) with good reduction outside √<2>"Mem.Inst.Sci.Engrg.Ritsumeikan Univ.. 59. 63-79 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 山田 修宣: "Essential self-adjointness of Dirac operators with a variable mass term"Proc.of Japan Acad.. 76. 13-15 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 山田 修宣: "Essential self-adjointness of n-dimensional Dirac operators with a variable mass term"J.of Mathematical Physics. 42. 2667-2676 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Takaaki Kagawa: "Non-existence of elliptic curves having everywhere good reduction and cubic discriminant"Proc. of Japan Acad.. 76. 141-142 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Takaaki Kagawa: "Determination of elliptic curves with everywhere good reduction over real quadratic fields Q (√<3p>)"Acta Arith.. 96. 231-245 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Takaaki Kagawa: "Elliptic curves over Q (√<2> )with good reduction outside √<2>"Mem. Inst. Sci. Engrg. Ritsumeikan Univ.. 59. 63-79 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Osanobu Yamada: "Essential self-adjointness of Dirac operators with a variable mass term"Proc. of Japan Acad.. 76. 13-15 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Osanobu Yamada: "Essential self-adjointness of n-dimensional Dirac operators with a variable mass term"J. of Mathematical Physics. 42. 2667-2676 (2001)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2003-09-17  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi