• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2001 Fiscal Year Final Research Report Summary

On pencil genus of 2-dimensional singularities

Research Project

Project/Area Number 12640060
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Geometry
Research InstitutionGunma University

Principal Investigator

TOMARU Tadashi  Gunma University, School of Medicine, Professor, 医学部, 教授 (70132579)

Co-Investigator(Kenkyū-buntansha) OKUMA Tomohiro  Gunma national college of Technical, Associate Professor, 助教授 (00300533)
Project Period (FY) 2000 – 2001
Keywordscomplex analytic space / normal singularity / degenerate family of algebraic curves / pencil genus / fundamental cycle / cyclic covering / Kodaira singularity / Kulikov singularity
Research Abstract

On any singularity (X,o) of a complex analytic space, we consider a good resolution space. Then we prove that it is embedded into a total space a pencil of algebraic curves. Let consider the minimal value of the genus of such pencil. We call the value "pencil genus of (X,o)" and write it p_e(X,o). Also, let f be an element of the maximal ideal of (X,o) which satisfies some properties. Let Φ : S → Δ be a pencil of algebraic curves and π : (Y,E)→(X,o) a good resolution such that S contains Y and satisfies the composition of f and π is equal to the restriction of Φ to Y. For such pair (X,o) and f, we consider such pencils and resolutions. Let consider the minimal value of the genus of such pencil. We call the value "pencil genus of a pair of (X,o) and f" and write it p_e(X,o,f). In this paper we researched the fundamental properties of p_e(X,o) and p_e(X,o,f). Our most important results are as follows :
Theorem 1. Let (X,o) be a normal surface singularity and let h an element of the maximal ideal of (X,o). Let π : (Y,E)→(X,o) be a good resolution such that (h o π) is a simple normal crossing divisor on Y. Then there exists a pencil of curves Φ : S → Δ of genus p_e(X,o,h) which satisfies the above property and all connected components of supp(S_o)\ E are minimal P^1-chains started from E.
Theorem 2. Let (X,o) be a normal surface singularity. Suppose p_f(X,o)≧ 2. Then (X,o) is a Kodaira singularity if and only if the w.d.graph for the minimal good resolution of (X,o) is a Kodaira graph and p_e(X,o)=p_f(X,o)
Theorem 3. (X,o) is a Kulikov singularity if and only if there is a reduced element h in the maximal ideal of (X,o) with p_e (X,o,h) =p_f(X,o).

  • Research Products

    (8 results)

All Other

All Publications (8 results)

  • [Publications] 都丸 正: "On Kodaira singularities defined by z^n=f(x, y)"Math. Z.. 236(1). 133-149 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 都丸 正: "Pinkham-Demazure constructions of 2-dimensional cyclic quotient singularities"Tsukuba J. Math.. 25. 75-84 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 奥間 智弘: "A numerical condition for 2-dimensional cyclic quotient singularities"Proc. Amer. Math. Soc.. 129. 2823-2831 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 奥間 智弘: "Simultaneous good resolutions of deformations of Gorenstein surface singularities"Internat. J. Math.. 12. 49-61 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T. Tomaru: "On Kodaira singularities defined by z^n=f(x,y)"Math. Z.. 236. 133-149 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T. Tomaru: "Pinkham-Demazure construction for 2-dimensional cyclic quotient singularities"Tsukuba J. Math. 25. 75-84 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T. Okuma: "A numerical condition for a deformation of a Gorenstein surface singularity to admit a simultaneous log-canonical model"Proc. A.M.S.. 129. 2823-2831 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T. Okuma: "Simultaneous good resolutions of deformation of Gorenstein surface singularities"Internat. J. Math.. 12. 49-61 (2001)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2003-09-17  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi