• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2002 Fiscal Year Final Research Report Summary

Morse index of constant mean curvature surfaces and discrete constant mean curvature surfaces

Research Project

Project/Area Number 12640070
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Geometry
Research InstitutionKOBE UNIVERSITY

Principal Investigator

ROSSMAN Wayne  Kobe University Faculty of Science Associate Professor, 理学部, 助教授 (50284485)

Co-Investigator(Kenkyū-buntansha) YAMADA Koutarou  Kyushu University Grad. Sch. Math. Professor, 大学院・数理科学研究院, 教授 (10221657)
MIYAKAWA Tetsurou  Nagoya University Grad. Sch. Math. Professor, 大学院・多元数理科学研究科, 教授 (10033929)
Project Period (FY) 2000 – 2002
Keywordsminimal surface / constant mean curvature surfaces / Euclidean 3-space / hyperbolic 3-space / Morse index / discrete surfaces / integrable systems / spherical 3-space
Research Abstract

(1) Working with Konrad Polthier, we considered a variational approach for defining discrete minimal surfaces, and established a variational approach for defining discrete constant mean curvature surfaces. We constructed discrete catenoids and helicoids and Delaunay surfaces, and we completely classified the case of catenoids. Furthermore, we computed the discrete Morse index of discrete minimal surfaces and used these computations to examine the Morse index of smooth minimal surfaces. (2) The head investigator proved that Wente tori (these are genus 1 compact constant mean curvature surfaces in R^3) have Morse index at least 7, and also found a lower bound for the Morse index of Wente tori that grows with the spectral genus of the surface. Furthermore, working with Lima and Sousa Neto, we improved the lower bound estimate of 7 to 8. (3) Working with Lima and Berard, we determined the growth rate of the Morse index on complete noncompact constant mean curvature surfaces. (4) Working with Thayer and Wohlgemuth, we constructed many examples of doubly-periodic minimal surfaces in R^3. (5) Working with Umehara and Yamada, we classified all constant mean curvature 1 surfaces in hyperbolic 3-space H^3 that have total curvature at most 8π. (6) Working with Umehara and Yamada and Kokubu, we have started a project to study the nature of singular points on flat surfaces in H^3. (7) Working with Schmitt and Kilian, we have started a project to study constant mean curvature surfaces of genus 0 with three asymptotically Delaunay ends in R^3 and H^3 and the 3-dimensional spherical space S^3.

  • Research Products

    (16 results)

All Other

All Publications (16 results)

  • [Publications] Polthier, Rossman: "Discrete Constant Mean Curvature Surfaces and their Index"J.Reine.U.Angew.Math.. 549. 47-77 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Berard, Lima, Rossman: "Index growth of hypersurfaces with constant mean curvature"Math.Z.. 239. 99-115 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Rossman: "Lower bounds for Morse index of constant mean curvature tori"Bull. London Math. Soc.. 34. 599-609 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Rossman: "The Morse index of Wente tori"Geom. Dedicata. 86. 129-151 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Lima, Rossman, Sousa Neto: "Lower bounds for index of Wente tori"Hiroshima Math. J.. 31. 183-199 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Rossman, Thayer, Wohlgemuth: "Embedded, Doubly Periodic Minimal Surfaces"J. Exp. Math.. 9. 197-219 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Polthier & Rossman: "Discrete constant mean curvature surfaces and their index"J. Reine. U. Angew. Math.. 549. 47-77 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Berard & Lima & Rossman: "Index growth of hypersurfaces with constant mean curvature"Math. Z.. 239. 99-115 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Wayne Rossman: "Lower bounds for Morse index of constant mean curvature tori"Bull. London Math. Soc.. 34. 599-609 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Rossman & Umehara & Yamada: "Constant mean curvature 1 surfaces with low total curvature in hyperbolic 3-space"Advanced Studies in Pure Math., Minimal Surfaces, Geometric Analysis and Symplectic Geometry. 34. 245-253 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Wayne Rossman: "The Morse index of Wente tori"Geom. Dedicata. 86. 129-151 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Wayne Rossman: "Mean curvature 1 surfaces in hyperbolic space, and their relationship to minimal surfaces in Euclidean space"J. Geom. Anal.. 11. 669-692 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Lima & Rossman & Sousa Neto: "Lower bounds for index of Wente tori"Hiroshima Math. J.. 31. 183-199 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Rossman & Thayer & Wohlgemuth: "Embedded doubly periodic minimal surfaces"J. Exp. Math.. 9. 197-219 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Wayne Rossman: "On embeddedness of area-minimizing disks, and an application to constructing complete minimal surfaces"J. Math. Soc. Japan. 52. 25-40 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Rossman & Umehara & Yamada: "Mean curvature surfaces in H^3 with low total curvature II"Tohoku Math. J.. to appear.

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2004-04-14  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi