• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2001 Fiscal Year Final Research Report Summary

Special'Holonomy Group and Supersymmetric Cycle

Research Project

Project/Area Number 12640074
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Geometry
Research InstitutionNagoya University (2001)
Hiroshima University (2000)

Principal Investigator

KANNO Hiroaki  Nagoya Univ., Grad. School of Math., Ass. Prof., 大学院・多元数理科学研究科, 助教授 (90211870)

Co-Investigator(Kenkyū-buntansha) UMEHARA Masaaki  Hiroshima Univ., Grad. School of Sci., Prof., 大学院・理学研究科, 教授 (90193945)
OHTA Hiroshi  Nagoya Univ., Grad. School of Math., Ass. Prof., 大学院・多元数理科学研究科, 助教授 (50223839)
AWATA Hidetoshi  Nagoya Univ., Grad. School of Math., Ass. Prof., 大学院・多元数理科学研究科, 助教授 (40314059)
YASUI Yukinori  Osaka City Univ., Grad. School of Sci., Ass. Prof., 大学院・理学研究科, 助教授 (30191117)
Project Period (FY) 2000 – 2001
KeywordsSpecial Holonomy / Supersymmetry / Local Mirror Symmetry / Instanton
Research Abstract

Mirror symmetry is one of important topics in' the geometry of manifold of special holonomy.We have investigated five dimensional supersymmetric gauge theories using the principle of local mirror symmetry. Based on the Hirzebruch surface Fa and its blow ups at N(< 5) points, we obtain a family of elliptic curves, from which the prepotential of five dimensional supersymmetric gauge theory compactified on S1 can be derived. Our results implies a new insight into the instanton expansion of the prepotential. It is expected that five dimensional supersymmetric gauge theories are deeply related to the geometry of rational elliptic surface and the theory of simple elliptic singularities.
We have also discussed deformations of our Spin(7] metrics within a formal power series expansion. Using a metric ansatz of cohomogeneity one with the principal orbit SU(S)/U(l), we have found new explicit metrics of Spin(7) holonomy. They are expected to describe local geometry of an isolated conical singularity which is developing when a SUSY 4-cycle CP2 shrinks,in a Spin(7} manifold. Our new metric is asymptotically conical in the sense that asymptotically there is a circle S1 with a finite radius, which is important from the viewpoint of M theory.We have also discussed deformations of our Spin(7] metrics within a formal power series expansion. Hence they are regarded as a higher dimensional analog of Taub-NUT metric and Atiyah-Hitchin metric in four dimensions. We hope these metrics have applications to M theory compactification.

  • Research Products

    (8 results)

All Other

All Publications (8 results)

  • [Publications] T.Eguchi, H.Kanno: "Five-Dimensional Gauge Theories and Local Mirror Symmetry"Nuclear Physics B. 586. 331-345 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Y.Yasui, T.Ootsuka: "Spin(7) Holonomy Manifold and Superconnection"Classical and Quantum Gravity. 18. 807-816 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] H.Kanno, Y.Yasui: "On Spin(7) Holonomy Metric Based on SU(3)/U(1)"Journal of Geometry and Physics. (印刷中).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] H.Kanno, Y.Yasui: "On Spin(7) Holonomy Metric Based on SU(3)/U(1):II"Journal of Geometry and Physics. (印刷中).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T. Eguchi and H. Kan.no: "Five-Dimensional Gauge Theories and Local Mirror Symmetry"Nucl. Phys.. 586. 331-345 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Y. Yasui and T. Ootsuke: "Spin(7) Holonomy Manifold and Superconnection"Class, and Quantum Grav. 18. 807-816 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H. Kanno and Y. Yasui: "On Spin(7) Holonomy Metric Based on SU(3)/U(1)"J. Geom. Phys.. in press.

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H. Kanno and Y. Yasui: "On Spin(7) Holonomy Metric Based on SU(3)/U(1) : II"J. Geom. Phys.. in press.

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2003-09-17  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi