2003 Fiscal Year Final Research Report Summary
GEOMETRY OF LAPLACE OPERATOR OR ITS VARIATION TYPE OPERATOR ON RIEMANNIAN MANIFOLD (2003)
Project/Area Number |
12640078
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
Geometry
|
Research Institution | SAGA UNIVERSITY |
Principal Investigator |
ISHIKAWA Susumu SAGA UNIV., MATHEMATICS, PROFESSOR, 理工学部, 教授 (10039258)
|
Co-Investigator(Kenkyū-buntansha) |
SHIOHAMA Katsuhiro SAGA UNIV., MATHEMATICS, PROFESSOR, 理工学部, 教授 (20016059)
KUROGI Tetsunori FUKUI UNIV., MATHEMATICS, PROFESSOR, 教育地域, 教授 (90022681)
KAWAI Shigeo SAGA UNIV., MATHEMATICS, PROFESSOR, 文化教育学部, 教授 (30186043)
CHENG Qing-ming SAGA UNIV., MATHEMATICS, PROFESSOR, 理工学部, 教授 (50274577)
YAMADA Kotaro KYUSHU UNIV., MATHEMATICS, PROFESSOR, 数理学, 教授 (10221657)
|
Project Period (FY) |
2000 – 2003
|
Keywords | Finite type submanifold / Biharmonic submanifold / Minimal submanifold |
Research Abstract |
We tried to investigate the following themes or questions with concernig of the finite type submanifolds or biharmonic submanifolds : (i)Are there the finite type surfaces with given mean curvature H in the family of surfaces of revolution x.(u, v)=(u cos v, u sin v, f(u)) generated by the periodic function z=f(u) ? (ii)Are there the finite type surfaces with given Gauss curvature K in the family of surfaces of revolution x(u, v)=(u cos v, u sin v, f(u)) generated by the function z=f(u) ? (iii)Are there the finite type surfaces with constant mean curvature in the family of surfaces ? (iv)Are there the Willmore surfaces of finite type ? (v-1)The finite type submanifolds in the space with D` Atri metric. (v-2)The biharmonic submanifolds in the space with D` Atri metric We will continue to study in future the following still open conjectures of Prof. Bang-yen Chen 1.To determine all of the finite type surfaces in Eucldean space of dimension 3 (Chen conjectur 1 : The only finite type surfaces in Eucldean space of dimension 3 are the minimal suefaces, spheres and right cylinders.) 2.To determine all of the biharmonic submanifolds in Eucldean space of dimension n (Chen conjectur 2 : The only in Eucldean space of dimension n (n>3) are the harmonc ones.) 3.To determine all of the biharmonic submanifolds in Minkowsky space of dimension 4.
|
Research Products
(33 results)
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
[Journal Article] Sphere Theorems2000
Author(s)
Katsuhiro Shiohama
-
Journal Title
Handbook of Differential Geometry, Chapter 8, (Edited by G.Dillen, P.Verstraelen) Vol.1
Pages: 867-903
Description
「研究成果報告書概要(欧文)」より
-
-
-
-
-
-
-