• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2001 Fiscal Year Final Research Report Summary

Geometry of polyhedron from the view point of differential geometry

Research Project

Project/Area Number 12640079
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Geometry
Research InstitutionKumamoto University

Principal Investigator

ITOH Jin-ichi  Kumamoto U., Fac. of Education, Professor, 教育学部, 教授 (20193493)

Co-Investigator(Kenkyū-buntansha) MATSUHISA Fumiko  Ibaragi U., Fac. of Science, Ass. Professor, 理学部, 助教授 (90194208)
HIRAMINE Yutaka  Kumamoto U., Fac. of Education, Professor, 教育学部, 教授 (30116173)
KANEMARU Tadayoshi  Kumamoto U., Fac. of Education, Professor, 教育学部, 教授 (30040033)
AGAOKA Yoshio  Hiroshima U., Fac. of Integrated Arts & Science, Ass. Professor, 総合科学部, 助教授 (50192894)
Project Period (FY) 2000 – 2001
Keywordspolyhedron / curvature / total curvature / cut locus / tightness / acute triangulation
Research Abstract

The analogous results for polyhedron of Gauss's Theorema Egregium and Weyl's volume formula were proved and written in the 2-dimensional case. The Cohn-Vossen type inequality for 2-polyhedron, the total curvature of graphs and its tightness are written.
There are the related new problems, for examples, the acute troangulations, the structure of essential cut locus, the length of cycles of cut locus, etc. All these problems are very exploratory and are expected to produce greate results by continuing studies.
With respect to the acute triangulations, we proved that the cubed surface admitts an acute triangulations with 24 triangles, the icosahedral surface admitts an acute triangulations with 12 triangles, and these are the least numbers. 'The dodecahedral surface does not have any acute triangulations with triangles less than 11 and admits an acute triangulation with 14 triangles. Moreover we discussed several other cases and got some fundamental ideas how to treat the general convex surfaces.
Withrespect to the essential cut locus, we define it in the case of a surface as the essential part of cut locus containing all critical points of distance function, and proved that the number of end points or the degree of vertices is related with several invariants of its inner metric. Moreover, we consider its structure in the case of convex polyhedron in general dimension.
With respect to the length of cycles of cut locus, we proved that there is a point p on any torus with diameter 1 such taht the length of cycles in the cut locus of p is greater than 2. It is the best possible estimate and there is no upper bound.

  • Research Products

    (13 results)

All Other

All Publications (13 results)

  • [Publications] Hangan, T., Itoh, J., Zamfirescu, T.: "Acute triangulations"Bulletin Mathematique de la Societe des Sciences Mathematiques de Roumanie. 43. 279-286 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Itoh, J., Tanaka, M.: "The Lipschitz continuity of the distance function to the cut locus"Transactions of American Mathematical Society. 353. 21-40 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Itoh, J., Tanaka, M.: "A Sard theorem for the distance function"Mathematische Annalen. 320. 1-10 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Itoh, J.: "Essential cut locus on a surface"Tohoku Mathematical Publications. 20. 53-59 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Ohtsuka (Matsuhisa), T., Machigashira, Y.: "Total Excess on Length Surfaces"Mathematische Annalen. 319. 675-706 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Agaoka, Y.: "Uniqueness of left invariant symplectic structures on the affine Lie group"Proceedings of American Mathematical Society. 129. 2753-2762 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Hangan, T., Itoh, J. & Zamfirescu, T.,: "Acute triangulations"Bull. Math. de la Societe des Sciences Math. de Roumanie. 43. 279-286 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Itoh, J. & Tanaka, M.: "The Lipschitz continuity of the distance function to the cut locus"Transactions of American Mathematical Society. 353. 21-40 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Itoh, J. & Tanaka, M.: "A Sard theorem for the distance function"Mathimatische Annalen. 320. 1-10 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Itoh, J.: "Essential cut locus on a surface"Tohoku Mathematical Publications. 20. 53-59 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Onshi, K & Itoh, J.: "Voronoi diagram on simply connected complete manifold"IEICE Trans. Fundamentals. (accepted).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Ohtsuka(Matsuhisa), T. & Machigashira, Y.: "Total Excess on Length Surfaces"Mathimatische Annalen. 319. 675-706 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Agaoka, Y.: "Uniqueness of left invariant symplectic structures on the affine Lie group"Proceedings of American Mathematical Society. 129. 2753-2762 (2001)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2003-09-17  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi