• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2002 Fiscal Year Final Research Report Summary

The structure of Galois covering spaces of the protective plane

Research Project

Project/Area Number 12640084
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Geometry
Research InstitutionTohoku Gakuin University

Principal Investigator

TSUCHIHASHI Hiroyasu  Tohoku Gakuin University, Assistant Professor, 教養学部, 助教授 (00146119)

Co-Investigator(Kenkyū-buntansha) KONNO Kazuhiro  Oosaka University, Assistant Professor, 大学院・理学研究科, 助教授 (10186869)
NAMBA Makoto  Oosaka University, Professor, 大学院・理学研究科, 教授 (60004462)
ASHIKAGA Tadashi  Tohoku Gakuin University, Professor, 工学部, 教授 (90125203)
Project Period (FY) 2000 – 2002
KeywordsGalois coverings / fundamental groups / projective plane / Dihedral groups / Symmetric groups / Polydiscs / Differential equations
Research Abstract

(i) We construct Galois coverings π : X → Y for certain finite groups G containing dihedral groups and symmetric groups such that any Galois covering W → Z of a compact protective variety Z with Gal(W/Z) 【similar or equal】 G, is obtained as the fiber product of π and a rational map from Z to Y. As an application, we show that for any Galois covering of the projective plane with the Galois group isomorphic to the dihedral group of order 2 r(r is odd), the branch locus is defined by a homogeneous polynomial f satisfying fh^2 =g^2_1 + g^r_2 for certain homogeneous polynomials h, g_1 and g_2.
(ii) We compute the fundamental groups of the complements for certain curves on the projective plane. As an application, we obtain a new Zariski pair each curve of which consists of four conics and has only nodes and tacnodes as singularities. Moreover, we give a method computing the fundamental groups of Galois coverings of the projective plane.
(iii) Let X be a Galois covering of the projective plane and let ^^-__X be the minimal resolution of X. We obtain the following results. If every subgroup of Gal(X/P^2) is normal, then the irregularity of ^^-__X is equal to zero. If Gal(X/P^2) is isomorphic to the dihedral group of order 2p (p is an odd prime), then the irregularity of ^^-__X is a multiple of p - 1.
(iv) We classify Galois coverings from projective spaces to theirselves.
(v) We give a method constructing new examples of Galois covering of the projective plane whose universal coverings are isomorphic to the 2-dimensional polydisk or open ball. Moreover, we show how to calculate the differential equations the ratios of whose linearly independent four solutions give uniformizations.

  • Research Products

    (14 results)

All Other

All Publications (14 results)

  • [Publications] M.Namba, H.Tsuchihashi: "On the fundamental groups of Galois covering spaces of the projective plane"GEOMETRICAE DEDICATA. (未定).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Arakawa, T.Ashikaga: "Local splitting families of hyperelliptic pencils I"Tohoku Mathematical Journal. 53. 361-369 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] K.Konno: "1-2-3 theorem for curves on algebraic surfaces"J.reine.angew.math. 533. 171-205 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Ashikaga, M.Ishizaka: "Classifications of degenerations of curves of genus 3"Tohoku Mathematical Journal. 54. 195-226 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Ashikaga, K.Konno: "Global and local properties of pencils of algebraic curves"Advancedc Studies in Pure Math.. 36. 1-49 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 土橋 宏康: "The dihedral covering of the projective palne"数理解析研究所講究録. 1233. 90-94 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 土橋 宏康: "Fundamental groups of Galois covering of the projective palne"数理解析研究所講究録. 1182. 83-88 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M.Namba and H.Tsuchihashi: "On the fundamental groups of Galois covering spaces of the projective plane"GEOMETRICAE DEDICATA. to appear.

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.Arakawa and T.Ashikaga: "Local splitting families of hyperelliptic pencils I"Tohoku Mathematical Journal. 53. 361-369 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K.Konno: "1-2-3 theorem for curves on algebraic surfaces"J.reine.angew.math. 533. 171-205 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.Ashikaga and M.Ishizaka: "Classifications of degenerations of curves of genus 3"Tohoku Mathematical Journal. 54. 195-226 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.Ashikaga and K.Konno: "Global and local properties of pencils of algebraic curves"Advanced Studies in Pure Math. 36. 1-49 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H.Tsuchihashi: "Fundamental groups of Galois covering of the projective plane"Koukyuuroku of RIMS. 1182. 83-88 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H.Tsuchihashi: "The dihedral covering of the projective plane"Koukyuuroku of RIMS. 1233. 90-94 (2001)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2004-04-14  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi