• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2001 Fiscal Year Final Research Report Summary

Spatio-temporal model based on Markov random fields and its application to forest ecology

Research Project

Project/Area Number 12640108
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field General mathematics (including Probability theory/Statistical mathematics)
Research InstitutionTokyo Institute of Technology

Principal Investigator

MASE Shigeru  Tokyo Institute of Technology, Department of Information Sciences, Professor, 大学院・情報理工学研究科, 教授 (70108190)

Co-Investigator(Kenkyū-buntansha) FUJISAWA Hironori  Tokyo Institute of Technology, Department of Information Sciences, Research Associate, 大学院・情報理工学研究科, 助手 (00301177)
Project Period (FY) 2000 – 2001
KeywordsMarkov random field / Maximum pseudo-likelihood estimator / approximate MLE / MCMC method / Gibbs sampler / canopy height / tropical forest / plant ecology
Research Abstract

Markov random field models are fitted to 12 years data of canopy heights of neo-tropical forests of Barro Corollado islands, Panama. Canopy heights are binarized, under and over 20m. From various experiments taking account of neighbouring patterns of trees to potential functions, it is verified that Markov random field model can model binary canopy patterns fairly well using 1-bocly, 2-body and 4-body patterns simultaneously. Model parameters are first estimated by the maximum pseudo-likelihood method and they are refined by a MQMC Newton-Raphson refinement clue to Huang and Ogata. Among 12 years data, 8 data shows fairly good fittings and 2 years good fittings. 2 years data cannot show good fittings, probably due to temporal drastic changes of forest systems. But it is seen that temporal unstableness recovers quickly, showing the ecological stableness of the forest. As a result, it is verified that Markov random field model can represent such forest, system. The analysis 43 under the process of submitting to an appropriate journal. Also the head investigator published a first Japanese book on spatial statistics including Markov random field in 2001.

  • Research Products

    (10 results)

All Other

All Publications (10 results)

  • [Publications] S.Mase: "Marked Gibbs processes and asymptotic normality of maximum p seudo-likelihood estinators"Mathematische Nachrichten. 209. 151-169 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Mase, S., J.Muller, D.Stoyan, R.P.Waagepetersen, G.Doge: "Packing Densities and Simulated Tempering for Hard Core Gibb s Point Processes"Ann. Inst. Statist. Math.. 53-4. 661-680 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 間瀬茂, 武田純: "空間データモデリング-空間統計学の応用"共立出版. 192 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 鎌谷直之: "ポストゲノム時代の遺伝統計学"羊土社. 315 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 清水邦夫: "地球環境データ"共立出版. 230 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Mase, S.: "Marked Gibbs processes and asymptotic normality of maximum pseudo-likelihood estimators"Mathematische Nachrichten. 209. 151-169 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Mase, S., J. Moller, D. Stoyan, R.P.: "Waagepetersen, and G. Doge, Packing Densities and Simulated Tempering for Hard Core Gibbs Point Processes"Ann. Inst. Statist. Math.. 53-4. 661-680 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] S. Mase & J. Takeda: "Spatial Data Modelling - Application of Spatial Statistics"Kyouritsu Shuppan Publishing Co. (in Japanese). 192 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] N. Kamatani (ed.): "Statistical bioinformatics in Post-Genome Era."Youdosha Publishing Co. (in Japanese). 315 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K. Shimizu (ed.): "Geo-Environmental Data"Kyouritsu Shuppan Publishing Co. (in Japanese). 230 (2002)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2003-09-17  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi