• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2002 Fiscal Year Final Research Report Summary

Study of Coding Theory and Designs

Research Project

Project/Area Number 12640137
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field General mathematics (including Probability theory/Statistical mathematics)
Research InstitutionOsaka Women's University

Principal Investigator

HAMADA Noboru  Osaka Women's Univ. Professor, 理学部, 教授 (90033844)

Co-Investigator(Kenkyū-buntansha) KURIKI Shinji  Osaka Prefecture Univ. Assistant Professor, 工学部, 助教授 (00167389)
FUJI-HARA Roh  Tykuba Univ. Professor, 社会工学系, 教授 (30165443)
ISHIHARA Kazuo  Osaka Women's Univ. Professor, 理学部, 教授 (90090563)
WATAMORI Yoko  Osaka Women's Univ. Assistant Professor, 理学部, 助教授 (70240538)
MARUTA Tatsuya  Aichi Prefecture Univ. Assistant Professor, 情報科学部, 助教授 (80239152)
Project Period (FY) 2000 – 2002
KeywordsInformation Theory / Coding Theory / Design / Linear code / Griesmer bound / Minikyner / Finite projective space / Blocking set
Research Abstract

The purpose of information theory and coding theory is to investigate the method of coding and encoding from a software point of view such that the transmission is more efficient and more reliable when messages are sent through a given communication channel. When messages are sent through a noisiless channel, the method of most efficient coding has been found by Shannon, Haffman and etc. Hence we consider a noisy q-ary symmetric memoryless channel as a communication channel and consider a linear code as the methord of coding. It is well known that in order to obtain a q-ary linear code which is capable of correcting most errors, it is sufficient to find a q-ary [n,k,d] code such that n=n, (k, d) for all integers k, d, q when messages are sent over a q-ary symmetric memoryless channel with q input and q outputs, where n, (k,d) denotes the smallest value of n for which there exists a q-ary [n,k,d] code. We investigated whether or not there exists a q-ary [n,k,d] code meeting the Griesmer bound for many integers k, d, q. In detail, see "N. Hamada and T. Maruta, A Survey of Recent Results on Optimal Linear Codes and Minihypers, submitted to Discrete Mathematics".

  • Research Products

    (12 results)

All Other

All Publications (12 results)

  • [Publications] N.Hamada, T.Helleseth: "Arcs, blocking sets and minihypers"Computers and Mathematics. 39. 1259-168 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] N.Hamada, T.Helleseth: "The nonexistence of some ternary linear codes and update of the bounds for n_3 (6,d), 1≦d≦243"Matheamtica Japonica. 52. 31-43 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] N.Hamada, T.Helleseth, H.Martinsen, O.Ytrehus: "There is no ternary [28,6,16] codes"IEEE Transactions on Information Theory. 46. 1550-1554 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] N.Hamada, T.Helleseth: "The nonexistence of ternary [97,6,63] codes"J. Statistical Planning and Inference. 106. 485-507 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Maruta: "On the nonexistence of q-ary linear codes of dimension five"Designs, codes and Cryptography. 22. 165-177 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Maruta: "On the extendability of linear codes"Finite Fields and their Applications. 7. 350-354 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] N. Hamada and T. Helleseth: "Arcs, blocking sets and minihypers"Computers and Mathematics. 39. 159-168 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] N. Hamada and T. Helleseth: "The nonexistence of some ternary linear codes and update of the bounds for n_3 (6,d) , 1 ^^<__= d ^^<__= 243"Mathematica Japonica. 52. 31-43 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] N. Hamada, T. Helleseth., H. Martinsen and *. Ytrehus: "There is no ternary [28,6,16] code"IEEE Transactions on Information Theory. 46. 1550-1554 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] N. Hamada and T. Helleseth: "The nonexistence of ternary [97,6,63] codes"J. Statistical Planning and Inference. 106. 485-507 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T. Maruta: "On the nonexistence of q-ary linear codes of dimension five"Designs, Codes and Cryptography. 22. 165-177 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T. Maruta: "On the extendability of linear codes"Finite Fields and their Applications. 7. 350-354 (2001)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2004-04-14  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi