• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2001 Fiscal Year Final Research Report Summary

Algebraic analysis of residue theory in several complex variables and algorithms

Research Project

Project/Area Number 12640161
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Basic analysis
Research InstitutionNIIGATA UNIVERSITY

Principal Investigator

TAJIMA Shinichi  Faculty of Engineering, Niigata University, Associate Professor, 工学部, 助教授 (70155076)

Project Period (FY) 2000 – 2001
KeywordsGrothendieck local residue / algebraic local cohomology / D-modules / holonomic system / Grobner basis / isolated singularity / Milnor number / Tjurina number
Research Abstract

Upon using the theory of holonomic D-modules and methods of computer algebra, we investigated algorithmic aspects of Grothendieck local residues. As applications, we derived and implemented diverse variety of algorithms.
1. Algorithm for computing annihilating ideal in the Weyl algebra of a zero dimensional algebraic local cohomology are derived. Main ingredient of this derivation is the notion of holonomic D-modules.
2. An algorithm that compute Grothendieck local residues is constructed. The resulting algorithm is efficient and available in use for generic case.
3. Some improvement of the above algorithm are also studied.
4. Solvability condition for an ordinary differential equation in a space of convergent power series and in a space of formal power series are investigated in the context of algebraic analysis. A necessary and sufficient condition for the solvability is described in terms of local residues. A regular singular system of ordinary differential equation which characterizes algebraic local cohomology solutions of the formal adjoint equation is introduced. The use of this system provides an effective method for computing formal solvability conditions.
5. Algebraic local cohomology classes attached to a non quasi homogeneous isolated singularity are studies in the context of D-modules.

  • Research Products

    (33 results)

All Other

All Publications (33 results)

  • [Publications] S.Tajima: "Grothendieck duality and Hermite-Jacobi formulas"Proc. Seventh International Conference on Several Complex Variables, in Finite or Infinite Dimensional Complex Analysis, Dekker. 503-509 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] S.Tajima., Y.Nakamura: "An algorithm for computing the residue of a rational function via D-Modules"Josai Mathematical Monographes. 2. 149-158 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Y.Nakamura.S.Tajima: "Residue calculus with differential operators"Kyushu J. of Mathematics. 54. 127-138 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] S.Tajima., Y.Nakamura: "An algorithm for the local residue with the viewpoint of D-modules"Proceedings of the second Congress of International Society for Analysis, its Applications and Computation congress. Kluwer. 809-817 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] S.Tajima: "Algebraic analysis of multivariate Hermite interpolation formulas"Proceedings of the second Congress of International Society for Analysis, its Applications and Computation congress, Kluwer. 829-838 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] S.Tajima: "代数的局所コホモロジー類のローラン展開とL.Ehrenpreis の Noether作用素"京都大学数理解析研究所講究録. 1138. 87-95 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] S.Tajima, Y.Nakamura: "Computing point residues for a shape basis case via differential operators"京都大学数理解析研究所講究録. 1158. 87-97 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] S.Tajima, Y.Nakamura: "Conjectures about the differential operators in an algorithm for computing the residues"京都大学数理解析研究所講究録. 1159. 81-86 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] S.Tajima: "非同次常微分方程式の可解条件について"京都大学数理解析研究所講究録. 1168. 66-79 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] S.Tajima: "常微分作用素環におけるイデアルの共通部分"京都大学数理解析研究所講究録. 1171. 156-163 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] S.Tajima, Y.Nakamura: "Local cohomology classes and dual bases for quasihomogeneous Isolated singularities"Finite or Infinite Dimensional Complex Analysis, Shandong Science and Technology Press. 213-218 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] S.Tajima: "An algorithm for computing the Noetherian operator representations and its applications to constant coefficients holonomic \par PDE's"Proceedings of -the Third International Conference Tools for Mathematical Modellin. 154-160 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Y.Nakamura, S.Tajima: "代数的的局所コホモロジー類の満たすホロイミック系の構成法について"京都大学数理解析研究所講究録. 1199. 70-89 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] S.Tajima: "偏微分作用素を用いた多変数留数計算アルゴリズムと中国剰余定理"京都大学数理解析研究所講究録. 1199. 51-69 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] S.Tajima, Y.Nakamura: "Unimodal例外型特異点における代数的局所コホモロジー類"京都大学数理解析研究所講究録. 1211. 155-165 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] S.Tajima, Y.Nakamura: "Milnor algebraに付随したholonomic系について"京都大学数理解析研究所講究録. 1212. 133-143 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] S.Tajima: "ロドリーグの公式について"京都大学数理解析研究所講究録. 1212. 65-72 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] S.Tajima, Y.Nakamura: "A study of semiquasihomogeneous singularities by using holonomic system"京都大学数理解析研究所講究録. 1233. 51-66 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] S.Tajima: "Algorithms for computing Grothendieck local residues ---improvement with a rescue step---"京都大学数理解析研究所講究録. 1233. 67-81 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] E.G.Kwon, K.H.Shon, S.Tajima: "Relations of pseudoconvex domains and Riemann domains in several complex"Korean J. of Math. (to appear). (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] S.Tajima: "Inhomogeneous ordinary differential equations, Iocal cohomologies and residues"International conference on finite or infinite dimensional complex analysis, Kluwer. (to appear). (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] S.Tajima: "Hermite-Jacobi 多変数補間積分とホロノミックD-加群"京都大学数理解析研究所講究録. (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] S.Tajima: "多変数留数biorthogonal基底(双対基底)と偏微分作用素"京都大学数理解析研究所講究録. (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] S.Tajima: "Holonomicな定数係数線形偏微分方程式系と\par Grothendieck duality"京都大学数理解析研究所講究録. (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Y.Nakamura, S.Tajima: "代数的局所コホモロジー類の満たすホロノミック系の構成法についてII"京都大学数理解析研究所講究録. (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] S.Tajima: "非同時常微分方程式の可解条件についてII"京都大学数理解析研究所講究録. (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] S. Tajima: "Grothendieck duality and Hermite-Jacobi fourmulas"Seventh International Conference on Several Complex Variables, Dekker. 503-509 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] S. Tajima and Y. Nakamura: "An algorithm for computing the residues of a rational function via D-modules"Josai Math. Monographes. vol 2. 149-158 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Y. Nakamura and S. Tajima: "Rasidues calculus with differential operators"Kyushu J. of Mathematics. vol. 54. 127-138 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] S. Tajima and Y. Nakamura: "An algorithm for the local residue with the viewpoint of D-modules"Proc. Of the second Congress of International Society for Analysis, its Applications and Computation Congress Kluwer. 809-817 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] S. Tajima: "Algebraic analysis of multivariate Hermite interpolation formulas"Proc. Of the second Congress of International Society for Analysis, its Applications and Computation Congress Kluwer. 829-838 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Y. Nakamura and S. Tajima: "Local cohomology classes and dual bases for quasi-homogeneous isolated singularities"Finite of infinite dimensional Comples Analysis, Shandong Science and Technology Press. 213-218 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] S. Tajima: "An algorithm for computing the Noetherian operator representations And its application to constant coefficients holonomic PDE's"Proc. Of the Third International Conference -Tools for Mathematical Modeling.

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2003-09-17  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi