• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2001 Fiscal Year Final Research Report Summary

Value distribution thieory of meromorphic mappings, in particular, uniqueness, degeneracy and normal families of meromorphic mappings

Research Project

Project/Area Number 12640198
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Basic analysis
Research InstitutionNumazu College of Technology

Principal Investigator

AIHARA Yoshihiro  Numazu College of Technology, Division of Liberal Arts, Associate Professor., 教養科, 助教授 (60175718)

Co-Investigator(Kenkyū-buntansha) KAMADA Hiroyuki  Numazu College of Technology, Division of Liberal Arts, Associate Professor., 教養科, 助教授 (00249799)
KITAGAWA Hoshihisa  Utsunomiya University, Faculty of Education, Associate Professor., 教育学部, 助教授 (20144917)
MORI Seiki  Yamagata University, Faculty of Science, Professor., 理学部, 教授 (80004456)
Project Period (FY) 2000 – 2001
Keywordsmeromorphic map / unicity theorem / algebraic dependence / Nevanlinna's deficiency / flat torus / indefinite Khaler metric / 不定値計量
Research Abstract

The head investigator Aihara has studied the uniqueness problem of meromorphic mappings.
He has investigated the propagation of algebraic dependence of meromorphic mappings. He gave some criteria for dependence of meromorphic mappings from finite sheeted analytic covering spaces over the complex m-space into a projective algebraic manifold and their applications (to appear hi Nagoya Math. J.). In particular, he gave a condition that two holomorphic mappings into a smooth elliptic curve are algebraically related by endomorphisms of elliptic curve. He and a investigator Mori also gave a construction of meromorphic mappings with deficiencies (Deficiencies of meromorphic mappings of hypersurfaces, preprint). An investigator Mori studied an elimination problem of defects of meromorphic mappings and obtained elimination theorems.
An investigator Kitagawa studied isometric deformations of flat tori isometrically immersed hi the 3-sphere S^3 with constant mean curvature. As a result, he obtained a classification of the flat tori isometrically immersed in S^3 which admit no isometric deformation. An investigator Kamada studied the existence problem for self-dual neutral Khaler metrics on compact complex surfaces, and proved that a compact self-dual neutral Khaler surface admitting a certain S^1 symmetry is biholomorphic to one of the Hirzebruch surfaces of rank d 【less than or equal】 2. He also studied a construction of explicit self-dual neutral Khaler metrics on the product of complex projective lines.

  • Research Products

    (22 results)

All Other

All Publications (22 results)

  • [Publications] 相原義弘: "Criteria for algebraic dependence of meromorphic mappings and their applications"Finite or Infinite Dimensional Complex Analysis(eds.L Yang et al.), Shandong Science and Technology Press. 6-11 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 相原義弘: "Propagation of algebraic dependence of meromorphic mappings"Taiwanese Math.J.. Vol.5. 607-689 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 相原義弘: "Geometric conditions for uniqueness problems of meromorphic mappings"RIMS Kokyuuroku. Vol.1236. 98-111 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 相原義弘: "Algebraic dependence of meromorphic mappings in value distribution theory"Nagoya Math.J. (印刷中).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 森正気: "Defects of holomorphic curves into P^n【○!C】 for rational moving targets and a space meromorphic mappings"Complex Variables. Vol.43. 363-379 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 森正気: "A space of meromorphic mappings and an space of defects"Taiwanese J.Math.. Vol.5. 519-533 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 北川義久: "Deformable flat tori in $S^3$ with constant mean curvature"Osaka J.Math.. (印刷中).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 鎌田博行: "Indefinite analogue of hyperbolic ansatz and its application}"Proc.of the Fifth Pacific Rim Geometry Conference (Sendai,2000),69--73,Tohoku Math.Publ.. Vol.20. 69-73 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 鎌田博行, 納谷 信: "Quaternionic analogue of CR geometry"Semin.Theor.Spectr.Geom.Seminaire de theorie spectrale et geometrie Grenoble. Vol.19. 41-52 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Yoshihiro Aihara: "Criteria for algebraic dependence of meromorphic mappings and tneir applications."Finite or Infinite Dimensional Complex Analysis (eds. L Yang et al.). 6-11 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Yoshihiro Aihara: "Propagation of algebraic dependence of meromorphic mappings"Taiwanese Math. J.. 5. 667-689 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Yoshihiro Aihara: "Geometric conditions for uniqueness problems of meromorphic mappings."RIMS Kokyuuroku. 1236. 98-111 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Yoshihiro Aihara: "Algebraic dependence of meromorphic mappings in value distribution theory."to appear in Nagoya Math. J..

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Seiki Mori: "Defects of holomorphic curever into Pnc for rational movin targets and a space of meromorphic mappings."Complex Variables. 43. 363-379 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Seiki Mori: "A space of meromorphic mappings and an elimination of defects."Taiwanese J. Math.. 519-533 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Seiki Mori: "A space of meromorphic mappings and an elimination of defects."Taiwanese J. Math.. 519-533 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Yoshihiro Kitagawa: "Deformalble flat tori in S^3 with constant mean curvature."to appear in Nagoya Math. J..

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Yoshihiro Kitagawa: "Deformalble flat tori in S^3 with constant mean curvature."to appear in Nagoya Math. J..

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Yoshihiro Kitagawa: "Indefinite analogue of hyperbolic ansatz and its application."Proc. The Fifth Pacific Rim Geometry Conference(Sendai, 2000). 20. 69-73 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Yoshihiro Kitagawa: "Indefinite analogue of hyperbolic ansatz and its application."Proc. The Fifth Pacific Rim Geometry Conference(Sendai, 2000). 20. 69-73 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Yoshihiro Kitagawa: "Quaternionic analogue of CR geometry(with Shin Nayatani)"Semin. Theor. Spectr. Geom. 19. 41-52 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Yoshihiro Kitagawa: "Quaternionic analogue of CR geometry(with Shin Nayatani)"Semin. Theor. Spectr. Geom. 19. 41-52 (2001)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2003-09-17  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi