• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2002 Fiscal Year Final Research Report Summary

Research on the Behavior of Solutions Evolution Equations in Time-Almost Periodic Noncylindrical Domains

Research Project

Project/Area Number 12640220
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Global analysis
Research InstitutionTOKAI UNIVERSITY

Principal Investigator

YAMAGUCHI Masaru  Tokai University, Department of Mathematics,, Professor, 理学部, 教授 (10056252)

Co-Investigator(Kenkyū-buntansha) MATSUYAMA Tokio  Tokai University, Department of Mathematics, Professor, 理学部, 教授 (70249712)
TANAKA Minoru  Tokai University, Department of Mathematics, Professor, 理学部, 教授 (10112773)
AKAMATSU Toyohiro  Tokai University, Department of Mathematics Professor, 理学部, 教授 (00112772)
Project Period (FY) 2000 – 2002
Keywordstime-periodic noncylindrical domain / nonlinear wave equation / periodic solution / time-quasiperiodic noncylindrical domain / linear wave equation / almost periodic solution / Diophantine inequality
Research Abstract

In this project we dealt with linear and nonlinear wave equations in noncylindrical domain periodic or quasiperiodic in time. We studied the qualitative behavior of solutions of the initial boundary value problems (IBVP) and the boundary value problems (BVP). Our results are as follows.
(1) We considered BVP for 1-D nonlinear wave equations in time-periodic noncylindrical domains. If the nonlinear forcing term, the boundary functions and the boundary data are periodic in time with same period, BVP have time-periodic solutions. This problem had been regarded as one of the difficult problems.
(2) We considered IBVP for 1-D linear wave equations in time-quasiperiodic noncylindrical domains. The nonhomogeneous terms of the equations and the boundary data are also time quasiperiodic. As we showed in the previous Research Project, the solutions are generally almost periodic in time, hence bounded in time. We studied this phenomena more deeply, and found that there exist solutions which are the … More superpositions of time-unbounded waves.
(3) We considered IBVP for 3-D radially symmetric linear wave equations in time-quasiperiodic noncylindrical domains whose space-domains are surrounded by two balls. We showed that the solutions are generally almost periodic in time.
(4) We considered BVP for 3-D radially symmetric nonlinear wave equations in time-periodic noncylindrical domains whose space-domains are balls. Under the similar assumptions to those of (1) BVP have time-periodic solutions. The results seem to be interesting.
In order to solve the problems, we developed some useful method. This method consists of a transformation of BVP for wave equations to some functional equations and domain transformations that transform the noncylindrical domains to cylindrical domains. The former was established by M. Yamaguchi and the latter by M. Yamaguchi and H. Yoshida. This method is based on the Reduction Theorems by M. Herman and J. Yoccoz in periodic case and by M. Yamaguchi in quasiperiodic case. Less

  • Research Products

    (24 results)

All Other

All Publications (24 results)

  • [Publications] M.Yamaguchi: "Periodic solutions of nonlinear 3D wave equations in sphere-symmetric domain with periodically oscillating boundaries"Proceedings of the ISSAC (World Scientific co.). (To appear).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M.Yamaguchi: "Periodic solutions of nonlinear equations of string with periodically Ocillating boundaries"Funkcialaj Ekvacioj. 45. 397-416 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M.Yamaguchi: "3D wave equations in sphere-symmetric domain with periodically oscillating boundaries"Discrete and Continuous Dynamical Systems. 7. 385-396 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M.Yamaguchi: "Nonhomogeneous string problem with periodically moving boundaries (with Hiroshi Yashida)"Fields Institute Communications. 25. 565-574 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Akamatsu: "Remarks on the rank of a Lie algebra and necessary conditions for hypoellipticity of a degenerate parabolic operator"Proc.School of Sci.Tokai Univ.. 38. 21-31 (2003)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Matsuyama: "Asymptotic behavior of solutions for wave equation with an effective dissipation around the boundary"J.Math.Anal.Appl.. 271. 467-492 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Matsuyama: "Asymptotics for the nonlinear dissipative wave equation"Trans.AMS. 355. 865-899 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Matsuyama: "L^2-behavior of solutions to the linear heat and wave equations in exterior domains (with R.Ikehata)"Scientiae Mathematicae Japonicae. 55. 33-42 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Matsuyama: "Remarks on the L^2 estimates of the density for the compressible Navier Stokes flow in R^3 (with R.Ikehata and T.Kobayashi)"Nonlinear Anal. 47. 2519-2526 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M.Tanaka: "Characterization of a differentiable points of the distance function to the cut locus"J.Math.Soc.Japan. 55. 231-241 (2003)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M.Tanaka: "Compactification and maximal diameter theorem for noncompact manifolds with radial curvature bounded below"Math.Z.. 241. 341-351 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M.Tanaka: "A Sard theorem for the distance functions (with J.Itoh)"Math.Ann.. 320. 1-10 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M. Yamaguchi: "Periodic solutions of nonlinear 3D wave equations in sphere-symmetric domain with periodically oscillating boundaries"Proceedings of the ISSAC (World Scientific co.). to appear.

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M. Yamaguchi: "Periodic solutions of nonlinear equations of string with periodically Oscillating boundaries"Funkcialaj Ekvacioj. Vol.45, No.3. 397-416 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M. Yamaguchi: "3D wave equations in spheresymmetric domain with periodically oscillating boundaries"Discrete and Continuous Dynamical Systems. Vol.7, No.2. 385-396 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M. Yamaguchi, (with Hiroshi Yoshida): "Nonhomogeneous string problem with periodically moving boundaries"Fields Institute Communications. 25. 565-574 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T. Akamatsu: "Remarks on the rank of a Lie algebra and necessary conditions for hypoellipticity of a degenerate parabolic operator"Proc. School of Sci. Tokai Univ.. 38. 21-31 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T. Matsuyama: "Asymptotic behavior of solutions for wave equation with an effective dissipation around the boundary"J. Math. Anal. Appl.. 271. 467-492 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T. Matsuyama: "Asymptotics for nonlinear dissipative wave equation"Trans. AMS. 355. 865-899 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T. Matsuyama, (with R. Ikehata): "L^2-behavior of solutions to the linear heat and wave equations in exterior domains"Scientiae Mathematicae Japonicae. Vol.55, No.1. 33-42 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T. Matsuyama, (with R. Ikehata and T. Kobayashi): "Remarks on the L^2 estimates of the density for the compressible Navier Stokes flow R^3"Nonlinear Anal.. 47. 2519-2526 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M. Tanaka: "Characterization of a differentiable points of the distance function to the cut locus"J. Math. Soc. Japan. Vol.55, No.1. 231-241 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M. Tanaka: "Compactification and maximal diameter theorem for noncompact manifolds with radial curvature bounded below"Math. Z.. 241. 341-351 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M. Tanaka, (with J. Itoh): "A Sard theorem for the distance functions"Math. Ann.. 320. 1-10 (2001)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2004-04-14  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi