• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2002 Fiscal Year Final Research Report Summary

Research on the Regularity of Solutions for Geometric Variational Problems

Research Project

Project/Area Number 12640221
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Global analysis
Research InstitutionTokyo University of Science

Principal Investigator

TACHIKAWA Atsushi  Tokyo University of Science(T.U.S.), Faculty of Science and Technology, Professor, 理工学部, 教授 (50188257)

Co-Investigator(Kenkyū-buntansha) FURUTANI Kenro  T.U.S., Fac. of Sci. and Tech., Professor, 理工学部, 教授 (70112901)
KOBAYASHI Takao  T.U.S., Fac. of Sci. and Tech., Professor, 理工学部, 教授 (90178319)
NAGASAWA Takeyuki  Saitarna Univ., Fac. of Science, Professor, 理学部, 教授 (70202223)
TANAKA Makiko  T.U.S., Fac. of Sci. and Tech., Professor, 理工学部, 助教授 (20255623)
YAMAZAKI Taeko  T.U.S., Fac. of Sci. and Tech., Associate Professor, 理工学部, 助教授 (60220315)
Project Period (FY) 2000 – 2002
KeywordsVariattional Problems / regularity / Harmonic maps / Finsler manifold / energy functional
Research Abstract

The variational problems for the energy functional defined for maps between Riemmannian manifolds have been studied by many mathematicians.Namely, about harmonic maps between Riemannian manifolds, we have many deep results.Recently, some generalisations of harmonic maps attract the interest of several reseachers.In this research, we considered some generalised notion of harmonic maps and got some results on their regularity
In the year 2000, we treated harmonic maps with potentials, and got their existence and regularity results.In the year 2001, we considered more generalised notion of harmonic maps so-called F-farmonic tnays and get their existence and partial regularity results
In the year 2002, we treated harmonic maps into Finsler manidolds.Finsler manifolds are natural generalization of Riemannian ones.P.Centore defined the energy of a map between Finsler manifolds.We used Centores definition and specialized it for the case that the source manifold is Eucldean space. We calculated the Euler-Lagrange equation of it and got the equation for hannonic maps from an. Euclidean space R^m to a Finsler manifold. Moreover, we got a partial regularity result for energy minimizing map from R^m to a Finsler manifold for the case that m=3,4.More precisely, we proved that for the above cases the enegy minimizing maps are Wilder continuous outside the singular set whose Hausdorff dimension is less that m-2.

  • Research Products

    (12 results)

All Other

All Publications (12 results)

  • [Publications] Takeyuki Nagasawa, Atsushi Tachikawa: "Blow-up solutions for ordinary differential equations associated to harmonic maps and its applications"J.Math.Soc.Japan. 53. 485-500 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Atsushi Tachikawa: "Existence and regularity results for harmonic maps with potential."Tokyo J.Math.. 24. 195-204 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Atsushi Tachikawa: "Existence and regularity results for some variational problems related to harmonic maps."Nonlinear Anal.. 47. 1703-1714 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Atsushi Tachikawa: "A partial regularity result for harmonic maps into Finsler manifolds."Calc.Var.. 16. 217-224 (2003)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Nagasawa, K.Nakane, S.Omata: "Numerical computations for motion of vortices governed by a hyperbolic Ginzburg-Landau system"Nonlinear Anal.. 51・1. 67-77 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] P.Nagawawa, I.Takagi: "Bifurcating critical points of bending energy with constraints related to the shape of red blood cell"Cal.Var.Partial Differential Equations. 16・1. 63-111 (2003)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Takeyuki NAGASAWA, Atsushi TACHIKAWA: "Blow-up solutions for ordinary differential equations associated to hannonic maps and its applications"J.Math.Soc.Japan. 53. 485-500 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Atsushi TACHIKAWA: "Existence and regularity results for harmonic maps with potential."Tokyo J.Math.. 24. 195-204 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Atsushi TACHIKAWA: "Existence and regularity results for some variational problems related to harmonic maps."Nonlinear Anal.. 47. 1703-1714 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Atsushi TACHIKAWA: "A partial regularity result for harmonic maps into Finsler manifolds."Calc.Var.(Erratum, Calc.Var.). 16,16. 217,225-224,226 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Takeyuki NAGASAWA, Kazuaki NAKANE, Seiro OMATA: "Numerical computations for motion of vortices governed by a Hyperbolic Ginzburg-Landau system"Nonlinear Anal.. 51. 67-77 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Theyuki NAGASAWA, Izumi TAKAGI: "Bifurcating critical points of bending energy with constraints related to the shape of red blood cell,"Calc.Var.. 16. 63-111 (2003)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2005-04-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi