• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2001 Fiscal Year Final Research Report Summary

Development of High-Capacity Rechargeable Battery with a Lithium Metal Anode

Research Project

Project/Area Number 12650813
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field 工業物理化学
Research InstitutionYamaguchi University

Principal Investigator

YOSHIMOTO Nobuko  Yamaguchi University, Faculty of Engineering, Research Associate, 工学部, 助手 (30253173)

Co-Investigator(Kenkyū-buntansha) ISHIKAWA Masashi  Yamaguchi University, Faculty of Engineering, Associate, 工学部, 助教授 (30212856)
MORITA Masayuki  Yamaguchi University, Faculty of Engineering, Professor, 工学部, 教授 (70136167)
Project Period (FY) 2000 – 2001
KeywordsRechargeable Li batteries / Lithium Anode / Electrode / electrolyte interface / Lithium metal / Organic electrolyte / Electrolytic salts / Metallic salt additives / Charge-discharge efficiency
Research Abstract

Improving the reversibility of charge-discharge properties, the optimization of a Li metal anode/electrolyte interface was investigated by modifying physically or chemically. The results are summarized as follows.
1. Optimization for physical and chemical structure of Li metal anode/electrolyte interface A Li metal anode/electrolyte interface have been modified by electrodeposition of Li on a Ni substrate at a low temperature (-20℃) in PC-DMC with LiPF_6 or Li (C_2F_5SO_2)_2N and by the following Low-temperature cycling of electrodeposited Li. When a Li metal anode with the interface modified at -20℃ was cycle at 25℃, the cycle life of the anode in the LiPF_6/PC-DMC system was improved. Addition of metal salts (MgI_2, AlI_3) in organic electrolyte solutions has been examined to improve the coulombic efficiency for Li deposition/dissolution cycles. In the case of AlI_3 addition, the highest cycle life was obtained when AlI_3 was only added to the solution for the first deposition.
2. Electrochemical analysis for interfacial structure and electrochemical behavior of Li metal anode Optical observation with a CCD microscope revealed that the precycling in the low-temperature electrolytes provided an uniform Li-interface which remained on Li even after a rinse in temperature to 25℃. The ac impedance analysis suggested that the addition of AlI_3 is effective to keep the resistance at the Li/electrolyte interface low after the repeated cycles.
3. Effect of polarization behavior of current collector in organic electrolyte The anodic polarization behavior of Al as a current collector of Li ion battery has been investigated in organic electrolyte solutions containing different lithium salts. The AI current collector has suffered the corrosion in the solution containing Li (CF_3SO_2)_2N and Li (C_2F_5SO_2)_2N under an anodic polarization condition, whereas it was anodically stable in the LiPF_6 solution.

  • Research Products

    (11 results)

All Other

All Publications (11 results)

  • [Publications] 森田 昌行, 石川 正司: "リチウムイオン電池の混合有機溶媒電解質のイオン構造"電池技術. 12. 56-64 (2000)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M.Morita, N.Yoshimoto, M.Ishikawa et al.: "Electrochemical Behavior of Al in Organic Solutions Containing Different Lithium Salts"Proceedings of the 4th Japan-Korea Joint Seminar on Advanced Batteries. 70-75 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M.Ishikawa, N.Yoshimoto et al.: "Optimization of Physicochemical Characteristics of a Lithium Anode Interface for High-efficiency Cycling : An Effect of Electrolyte Temperature"J.Power Sources. 97-98. 262-264 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 吉本 信子, 石川 正司, 森田 昌行 他: "リチウムイオン電池用有機電解液中でのアルミニウムの陽分極挙動"表面技術. 52・8. 581-582 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 石川 正司, 吉本 信子, 森田 昌行 他: "二次電池用リチウム金属負極表面のその場観察-低温前処理の影響-"表面技術. 53・3. 219-220 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 石川 正司, 森田 昌行: "「21世紀のリチウム二次電池技術」,第2章4節 電解質"(株)シーエムシー出版. 87-115(215) (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M.Morita, M.Ishikawa: "Ionic Structures of Organic Electrolyte Solutions with Binary Solvent Systems for Lithium Ion Batteries"Battery Technology. 12. 56-64

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M.Ishikawa, N.Yoshimoto, M.Morita, et al: "Optimization of Physicochemical Characteristics of a Lithium Anode Interface for High-efficiency Cycling : An Effect of Electrolyte Temperature"J.Power Sources. 97-98. 262-264 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] N.Yoshimoto, M.Ishikawa, M.Morita, et al: "Anodic Behavior of Aluminum in Organic Electrolyte Solutions for Lithium Ion Batteries"Hyoumen Gijutu. 52-8. 581-582 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M.Ishikawa, N.Yoshimoto, M.Morita, et al: "In Situ Observation of Lithium Metal Anode for Rechargeable Lithium Batteries - Effects of Low-Temperature Precycling -"Hyoumen Gijutu. 53-3. 219-220 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M.Ishikawa, M.Morita: "Lithium Secondary Battery Technology for the 21 st Century, Chapter 2. The Newest Technology of Rechargeable Lithium Battery Materials, Section 4. Electrolyte"CMC CO., Ltd. 87-115 (2002)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2003-09-17  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi