• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2004 Fiscal Year Final Research Report Summary

Research on prehomogenecus vector spaces and representation theory of algebraic groups

Research Project

Project/Area Number 13440003
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionNagoya University

Principal Investigator

GYOJA Akihiko  Nagoya University, Graduate School of math., P, 大学院・多元数理科学研究科, 教授 (50116026)

Co-Investigator(Kenkyū-buntansha) FUJIWARA Kazuhiro  Nagoya University, Graduate School of math., P, 大学院・多元数理科学研究科, 教授 (00229064)
OKADA Soichi  Nagoya University, Graduate School of math., AP, 大学院・多元数理科学研究科, 助教授 (20224016)
UZAWA Toru  Nagoya University, Graduate School of math., P, 大学院・多元数理科学研究科, 教授 (40232813)
MUKAI Shigeru  Kyoto U., RIMS, P, 数理解析研究所, 教授 (80115641)
NOMURA Takaaki  Kyoto U., RIMS, AP, 大学院・理学研究科, 助教授 (30135511)
Project Period (FY) 2001 – 2004
Keywordsprehomogeneous vector sp. / algebraic group / representation / character sheaf / character sam
Research Abstract

We have studied relations among the theory of prehomogeneous vector spaces, the theory of Lusztig's character sheaves, and the modular representation theory of Iwahori-Hecke algebras.
In particular, we found a curious relations between the theory of prehomogeneous vector spaces and the modular representation theory of Iwahori-Hecke algebras.
In the same time, we have made a considerable progress in the classification theory of prehomogeneous vector spaces. Since the summer of 1996,we have studied this classification, noticing a miraculous resemblance with the minimal model theory in the biratbnal geometry. We have made it dear that the central problems are the following.
Problem 1.Classify minirnal prehomogeneous vector spaces modulo flop.
Problem 2.Find the counter part of the flip.
I feel that we have already established conceptual foundation as for the first problem, but I believe that the actual classification needs more time.
I feel that we have recently made considerable progress, and that we have already obtained many examples of the (unknown) flip.
The above stated progress is not published, but I want to regard it as the main result of the present project of these years.

  • Research Products

    (7 results)

All 2003 2002 2001

All Journal Article (6 results) Book (1 results)

  • [Journal Article] Certain unipotent representations of finite Chevalley groups2002

    • Author(s)
      A.Gyoja
    • Journal Title

      Aun.Sci.de l'Ecole Norm.Sug. 35・3

      Pages: 437-444

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Vector bundles on a K3 surface2002

    • Author(s)
      S.Mukai
    • Journal Title

      Proc.ICM, Beijing

      Pages: 495-502

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Certain unipotent representations of finite Chevalley groups2002

    • Author(s)
      A.Gyoja
    • Journal Title

      Ann.Sci.de l'Erole Norm.Sup. 35-3

      Pages: 437-444

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Vector bundles on a K3 surface.2002

    • Author(s)
      S.Mukai
    • Journal Title

      Proc.ICM, Beijing

      Pages: 495-502

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Symmetric varieties over arbitrary fields2001

    • Author(s)
      T.Uzawa
    • Journal Title

      C.R Acad.Sci.Paris 333・9

      Pages: 833-838

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Symmetric varieties over arbitrary fields2001

    • Author(s)
      T.Uzawa
    • Journal Title

      C.R Acad.Sci.Paris 333-9

      Pages: 833-838

    • Description
      「研究成果報告書概要(欧文)」より
  • [Book] An introduction to invariants and moduli2003

    • Author(s)
      S.Mukai
    • Total Pages
      503
    • Publisher
      Cambridge University Press
    • Description
      「研究成果報告書概要(和文)」より

URL: 

Published: 2006-07-11  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi