• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2003 Fiscal Year Final Research Report Summary

Research on special values and zeros of L-funcions and on automorphic forms

Research Project

Project/Area Number 13440007
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionKyoto University

Principal Investigator

YOSHIDA Hiroyuki  Kyoto Univ., Graduate School of Science, Professor, 大学院・理学研究科, 教授 (40108973)

Co-Investigator(Kenkyū-buntansha) UMEDA Toru  Kyoto Univ., Graduate School of Science, Associate Professor, 大学院・理学研究科, 助教授 (00176728)
HIRAGA Kaoru  Kyoto. Univ., Graduate School of Science, Assistant, 大学院・理学研究科, 助手 (10260605)
IKEDA Tamotsu  Kyoto Univ., Graduate School of Science, Associate Professor, 大学院・理学研究科, 助教授 (20211716)
FUJII Akio  Rikkyo Univ., Fuculty of Science, Professor, 理学部, 教授 (50097226)
FUJIWARA Kazuhiro  Nagoya Univ., Graduate School of Mathematics, Professor, 大学院・多元数理科学研究科, 教授 (00229064)
Project Period (FY) 2001 – 2003
KeywordsCM-period / Automorphic form / L-function / zeros of L-functions
Research Abstract

Yoshida studied various problems centered around the absolute CM-period. Also he found a direct method to obtain cohomology classes from automorphic forms of a wide class, by decomposing the integral of Eichler-Shimura type. He organized his research results in a book, which was published by American Mathematical Society. He studied a p-adic analogue of the absolute CM-period, in collaboration with Ph. D student Tomokazu Kashio. There are strong evidences that a p-adic analogue holds in a perfect manner. A few years ago, Ikeda constructed a lifing from elliptic modular forms to Siegel modular forms of several variables. Taking as the kernel function the restriction to the diagonal of this lifting, he constructed a new lifing, which contains Miyawaki's lifting as a apecial case.. He formulated a conjecture which relates the nonvanishing of this lifting to special values of certain L-functions. Hiraga formulated a conjecture which relates the Zelevinskii involution and A-packet conjectured by Arthur. As an evidence, he proved the commutativity of endoscopic lifts and the Zelevinskii involution. He further studied Arthur's conjecture 'on automorphic representations. Umeda studied three problems on the center of the univeral enveloping algebra of a Lie algebra of classical type, namely concrete description of generating system, relations to the other generating system and explicit representations of a generation system. These problems originated from the Capelli identity which is the identity of invariant differential operators. Fujiwara studied Leopoldt's conjecture using the Taylor-Wiles-Fujiwara theory and arrived at the new point of view that number. fields and hyperbolic manifolds are analogous. Fujii studied on the Montgomery conjecture on the pair correlations of zeros, the Montgomery sum and higher 'moments of the argument of the Riemann zeta function.

  • Research Products

    (14 results)

All Other

All Publications (14 results)

  • [Publications] 吉田敬之: "Motives and Siegel modular forms"Amer.J.Math.. 123. 1171-1197 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 池田 保: "On the lifting of elliptic cusp forms to Siegel cusp forms of degree 2n"Ann.Math.. 154. 641-681 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 梅田 亨: "Application of Koszul complex to Wronski relations for U(gl_n)"Commentarii Math.Helv.. 78. 663-680 (2003)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 平賀 郁: "On functoriality of Zelevinski involutions"Compositio Math.. (印刷中).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 藤原一宏: "A proof of the absolute purity conjecture (after Gabber)"Adv.Stud.Pure Math.. 36. 153-183 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 藤井昭雄: "On the pair correlation of the zeros of the Riemann zeta function"Analytic Number Theory(published by Kluwer). 127-142 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 吉田敬之: "Absolute CM-periods"American Mathematical Society. 282 (2003)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Hiroyuki Yoshida: "Motives and Siegel modular forms"Amer, J Math. 123. 1171-1197 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Tamotsu Ikeda: "On the lifting of elliptic cusp forms to Siegel cusp forms of degree 2n"Ann, Moth. 154. 641-681 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Toru Umeda: "Application of Koszal complex to Wronski relations for V(gζn)"Commentarii Math Helv. 78. 663-680 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Kaoru Hiraga: "Onfunctoriality of Zelevinski involution"Compositio Moth. (in press).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Kazuhiro Fujiwara: "A proof of the absdute purity conjecture (after Gabber)"Adv. Stud. Pure Math. 36. 153-183 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Akio Fujii: "On the pair correlation of the zeros of the Riemann zetu function"Analytic number theory (published by Klywer). 127-142 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Hiroyuki Yashida: "Absolute CM-periods"American Mathmutical Society. (2003)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2005-04-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi