• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2002 Fiscal Year Final Research Report Summary

Representation theory of Lie algebras and quantum groups

Research Project

Project/Area Number 13440010
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionOsaka City University (2002)
Hiroshima University (2001)

Principal Investigator

TANISAKI Toshiyuki  Graduate school of Science, Professor, 大学院・理学研究科, 教授 (70142916)

Co-Investigator(Kenkyū-buntansha) KAWANAKA Noriaki  Osaka Univ., Graduate school of Information Sience and technology, professor, 大学院・情報科学研究科, 教授 (10028219)
SHOJI Toshiaki  Tokyo Science Univ., Faculty of science and tecnology, professor, 理工学部, 教授 (40120191)
KASHIWARA Masaki  Kyoto Univ., Reseach Trstitute of Mathematical Science, professor, 数理解析研究所, 教授 (60027381)
KANEDA Masaharu  Graduate school of Science, Professor, 大学院・理学研究科, 教授 (60204575)
SAITO Yoshihisa  Univ. of Tokyo Graduate school of Mathematical Science, assistant professor, 大学院・数理化学研究科, 助教授 (20294522)
Project Period (FY) 2001 – 2002
KeywordsInfimte dimensiand Lie Igobras / quantum groups / algobrarc groups / Highestweight modulas
Research Abstract

1. Flag manifolds for quantum groups Tanisaki investigaled represecrtation theory of quantum groups using the flag manifolds of quanlum groups as non-commutative schemes. Especially, he has considered about the D-modyle theory and established a version of Beillnson-Bernstein correspondence proving a part of the conjecture by Lunts-Roscnberg
2. Finite dimensional representations of quantum sffine algebras Kashiwara investigated the crystal bases and gave a condition for the tensor product of fundamental modules to be irreducible. Nakajima indroduced a crystal structure on the set of certain monomials and gave a new proof for the fact that the standard modulesare tensor product of fundamental modulcs. He also gave a proof of Lusztig's conjecture about the cell structure of quantum affine algebras
3. Green functions assoclated to complex refiection groups Shoji constructed a new type of Macdonald polynomials as a two parameter version of Hall-Littlewood polynomial associated to complex refection groups
4. Characters of finite Chevalley groups Shoji investigated about the delermination of some scalars which are the remaining part in Lusztig's program determining the characters, and has decided them for the special lincar groups
5. Elliptic Lic algebras and assclated Artin groups and Hecke algebras Saito constructed a representation of exccptional elliptic Lie algebsa using the method of vertex operator algebras and computed its characters. He also get a result about a relation between the elilptic Hecke algebras and the double affino Hecke algebras
Sphcrical homogeneous spaces over p-adic flekis Kato gave a dimension formula for spherical functions for some cases and constructed a general theory of spherical functions for symmetric spaces

  • Research Products

    (14 results)

All Other

All Publications (14 results)

  • [Publications] Y.Morita: "The Radon transform on an exceptional flag manifold"Hiroshima Math J.. 32(1). 7-15 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M.Kashiwara: "Parabolic Kazhdan Lusztig polynomials and Schubert varieties"J. Algebra. 249(2). 3060-325 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] C.Marastoni: "Radon transforms for quosi-equivariant D-modules as generalized fbg manifold"Differential geometry and its applications. 18(2). 147-176 (2003)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] S.Kato: "Whittakker-Shintoni functions for orthogonal groups"Tohoku J. Math.. 55(1). 1-64 (2003)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Shoji: "Green functions associated to complex reflection groups II"J. Algebra. 258(2). 563-598 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] H.Nakajima: "Quiver varieties and t-analogs of 8-characters of quantum affine algebras"Ann. of Math.. (2003)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 谷崎俊之: "リー代数と量子群"共立出版. 267 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Y.Morita: "The Radon transform on an exceptional flag manifoid"Hiroshima Math. J. 32(1). 7-15 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M.Kashiwara: "Parabolic Kazhdan-Lusztig polynomials and Schubert varieties"J.Algebra. 249(2). 306-325 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] C.Marastoni: "Radon transforms for quasi-equivariant D-modules on generalized flag manifolds"Differential geometry and its applications. 18(2). 147-176 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] S.Kato: "Whitakker-Shintani functions for orthogonal groups"Tohoku J. Math.. 55(1). 1-64 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.Shoji: "Green functions associated to complex reflection groups,ll."J. Algebra. 258(2). 563-598 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H.Nakajima: "Quiver varieties and t-analogs of q-characters of quantum affine algebras"Ann. Of Math. in press.

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.Tanisaki: "Lie algebras and quantum groups (in Japanese)"Kyoritsu. 267 (2002)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2004-04-14  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi