• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2004 Fiscal Year Final Research Report Summary

Commutative ring theory and singularity theory

Research Project

Project/Area Number 13440015
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionNihon University

Principal Investigator

WATANABE Keiichi  Nihon University, College of Humanities and Sciences, Professor, 文理学部, 教授 (10087083)

Co-Investigator(Kenkyū-buntansha) TOMARI Masataka  Nihon University, College of Humanities and Sciences, Professor, 文理学部, 教授 (60183878)
FUKUDA Takuo  Nihon University, College of Humanities and Sciences, Professor, 文理学部, 教授 (00009599)
MOTEGI Kamahi  Nihon University, College of Humanities and Sciences, Professor, 文理学部, 教授 (40219978)
KURANO Kazuhiko  Meiji University, School of Science and Technology, Professor, 理工学部, 教授 (90205188)
HARA Nobuo  Tohoku University, Graduate School of Science, Assistant Lecturer, 大学院・理学研究科, 助教授 (90298167)
Project Period (FY) 2001 – 2004
Keywordsmultiplier ideal / lc threshold / F-pure / Hilbert-Kunz multiplicity / Frobenius endomorphism / log terminal singularity / tight closure / regular local ring
Research Abstract

The results are mainly concerning the followings 3 themes
1.Multiplier ideals ;
J.Lipman and K.Watanabe proved that every integrally closed ideal in 2 dimensional regular local rings is a multiplier ideal.
N.Hara and K.Yoshida defined a generalization of "tight closures" in characteristic p>0 and by using that concept, they Succeeded to calculate multiplier ideals by purely algebraic (by commutative ring theory) method.
S.Takagi and K.Watanabe established the notion of "F-pure thresholds", which corresponds to the notion of lc(=log canonical) threshold in characteristic 0, used in algebraic geometry. This concept has many interesting features in both singularity theory and commutative ring theory.
2.Hilbert-Kunz multiplicity ;
Hilbert-Kunz multiplicity is a kind of multiplicity defined for rings of positive characteristics. Watanabe and Yoshida proved before that a ring is regular if and only if the HK multiplicity of the ring is 1. This time we determined the rings whose HK multiplicity is smallest among non-regular rings in dimension 2 and 3.

  • Research Products

    (15 results)

All 2005 2004 2003 2002 2001

All Journal Article (14 results) Book (1 results)

  • [Journal Article] Hilbert-Kunz multiplicity of three dimensional local rings2005

    • Author(s)
      K.Watanabe, K.Yoshida
    • Journal Title

      Nagoya Math.J. vol.177

      Pages: 47-75

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] On F-pure thresholds,2004

    • Author(s)
      S.Takagi, K.Watanabe
    • Journal Title

      Journal of Algebra, 282

      Pages: 278-297

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Minimal relative Hilbert-Kunz multiplicity2004

    • Author(s)
      K.Watanabe, K.Yoshida
    • Journal Title

      Illinois J.Math. 48

      Pages: 273-294

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] The total coordinate ring of a normal projective variety,2004

    • Author(s)
      J.Elizondo, K.Kurano, K.Watanabe
    • Journal Title

      Journal of Algebra, 276

      Pages: 625-637

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] The total coordinate ring of a normal projective variety2004

    • Author(s)
      J.Elizondo, K.Kurano, K.Watanabe
    • Journal Title

      J.of Algebra vol.276

      Pages: 625-637

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] On F-pure thresholds2004

    • Author(s)
      S.Takagi, K.Watanabe
    • Journal Title

      J.of Algebra vol.282

      Pages: 278-297

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] A characterization of semi-quasihomogeneous Function in terms of the Milnor number2004

    • Author(s)
      M.Tomari, M.Furuya
    • Journal Title

      Proc.of Amer.Math.Soc. vol.132

      Pages: 1885-1890

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Integrally closed ideals in two-dimensional regular local rings are multiplier ideals,2003

    • Author(s)
      J.Lipman, K.Watanabe
    • Journal Title

      Math.Reasearch Letters 10

      Pages: 423-434

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] A generalization of tight closure and multiplier ideals 355 (2003), 3143--3174.2003

    • Author(s)
      N.Hara, K.Yoshida
    • Journal Title

      Transaction of American Math.Soc. 355

      Pages: 3143-3174

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Integrally closed ideals in two-dimensional regular local rings are multiplier ideals2003

    • Author(s)
      J.Lipman, K.Watanabe
    • Journal Title

      Math.Reasearch Letters vol.10

      Pages: 423-434

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] A generalization of tight closure and multiplier ideals2003

    • Author(s)
      N.Hara, K.Yoshuda
    • Journal Title

      Trans.Amer.Math.Soc. vol 355

      Pages: 3143-3174

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] F-regular and F-pure rings vs.log terminal and log canonical singularities.2002

    • Author(s)
      N.Hara, K.Watanabe
    • Journal Title

      Journal of Algebraic Geometry vol 11

      Pages: 363-392

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] F-rationality of Rees algebras2002

    • Author(s)
      N.Hara, K.Watanabe, K.Yoshida
    • Journal Title

      Journal of Algebra vol 247

      Pages: 153-190

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] On Roberts rings,2001

    • Author(s)
      K.Kurano
    • Journal Title

      J.of Mathematical Society of Japan 53

      Pages: 333-355

    • Description
      「研究成果報告書概要(和文)」より
  • [Book] 環と体2002

    • Author(s)
      渡辺 敬一
    • Total Pages
      180
    • Publisher
      朝倉書店
    • Description
      「研究成果報告書概要(和文)」より

URL: 

Published: 2006-07-11  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi