• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2003 Fiscal Year Final Research Report Summary

Algebraic topology and formal group law

Research Project

Project/Area Number 13440022
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field Geometry
Research InstitutionKyoto University

Principal Investigator

NISHIDA Goro  Kyoto Univ., Graduate School of Science, Professor, 大学院・理学研究科, 教授 (00027377)

Co-Investigator(Kenkyū-buntansha) NAKAJIMA Hiraku  Kyoto Univ., Graduate School of Science, Professor, 大学院・理学研究科, 教授 (00201666)
KONO Akira  Kyoto Univ., Graduate School of Science, Professor, 大学院・理学研究科, 教授 (00093237)
FUKAYA Kenji  Kyoto Univ., Graduate School of Science, Professor, 大学院・理学研究科, 教授 (30165261)
TANABE Michimasa  Kyoto Univ., Graduate School of Science, Assistant, 大学院・理学研究科, 助手 (20236665)
YOSHIDA Hiroyuki  Kyoto Univ., Graduate School of Science, Professor, 大学院・理学研究科, 教授 (40108973)
Project Period (FY) 2001 – 2003
Keywordscohomnmgv / Hopf algebra / homotopy group / category
Research Abstract

In Heisei 13, we studied mainly the stable splitting, of Unitary groups given by H. Miller, and considerd its refinment. The homology of Unitary groups are the exterior algebras. Miller's splitting correspond to the degreewise splitting of the exterior algebra. On the other. hand, local splitting at a prime p was given by using the Adams operation. We have shown that we can mix these splittings and obtainned the finner splitting. In Heisei 14, we studied the Mittchell-Priddy spectrum and its cohomology. We found a minimal set of generators as the module over the Steenrod algebra. In Heisei 15, we made two different stdies. One is the study of the structure of Steenrod algebra from a new point of view. The Hopf algebra structure of the Steenrod algebra was determined by Milnor and known the same as the automorphism group of the additive group law. It was not known the conceptional exposition of this fact. We gave this by combining notions of multiplicative operations and the Dickson invariants. The other study is homotopy theory of higher dimensional category. Correspondence between discrete categories and spaces with non-trivial homotopy group in dim 1 is extended to 2 categories

  • Research Products

    (8 results)

All Other

All Publications (8 results)

  • [Publications] 西田 吾郎: "On a p-local stable splitting of U(n)"Journal of Mathematics of Kyoto University. 41. 387-401 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 深谷 賢治: "Floer homology and mirror symmetry"Adv.Stud.Pure Math., 34,Math.Soc. Japan, Tokyo. 34. 31-127 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 中島 啓: "Quiver varieties and finite dimensional representations of quantum affine algebras"J.Amer.Math.Soc.. 14. 145-238 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 河野 明: "Topological characterization of extensor product on BU"J.Math.Kyoto Univ.. 42. 243-247 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] G.Nishida: "On a p-local stable splitting of U (n)"Journal of Mathematics of Kyoto University. 41. 387-401 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K.Fukaya: "Floer homology and mirror symmetry"Adv. Stud. Pure Math.. 34. 31-127 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H.Nakajima: "Quiver varieties and finite dimensional representations of quantum affine algebras"J. Amer. Math. Soc. 14. 145-238 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] A.Kono: "Topological characterization of extensor product on BU"J. Math. Kyoto Univ.. 42. 243-247 (2002)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2005-04-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi