• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2003 Fiscal Year Final Research Report Summary

BELLMAN EQUATIONS OF RISK-SENRSITIVE STOCHASTIC AND THEIR APPLICATIONS

Research Project

Project/Area Number 13440033
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field General mathematics (including Probability theory/Statistical mathematics)
Research InstitutionOsaka University

Principal Investigator

NAGAI Hideo  OSAKA UNIVERSITY, GRADUATE SCHOOL OF ENGINEERING SCIENCES, PROFESSOR, 基礎工学研究科, 教授 (70110848)

Co-Investigator(Kenkyū-buntansha) KIOKE Shigeaki  SAITAMA UNIVERSITY, FACULTY OF EDUCATIONY, PROFESSOR, 理学部, 教授 (90205295)
SEKINE Jun  OSAKA UNIVERSITY, GRADUATE SCHOOL OF ENGINEERING SCIENCES, PROFESSOR, 大学院・基礎工学研究科, 助教授 (50314399)
AIDA Shigeki  OSAKA UNIVERSITY, GRADUATE SCHOOL OF ENGINEERING SCIENCES, PROFESSOR, 大学院・基礎工学研究科, 教授 (90222455)
FUNAKI Tadahisa  TOKYO UNIVERSITY, GRASUATE SCHOOL OF MATHEMATICAL SCIENCE, PROFESSOR, 数理科学研究科, 教授 (60112174)
ISHII Hitoshi  WASEDA UNIVERSITY, FACULTY OF EDUCATION, PROFESSOR, 教育学部, 教授 (70102887)
Project Period (FY) 2001 – 2003
KeywordsBellman equations / Portfolio optimization / Maximum principle / Log Sobolev inequalities / Exponential hedge / Viscosity solutions / Critical surface models / semi-classical limits
Research Abstract

1. We considered risk-sensitive portfolio optimization problems on infinite time horizon for linear Gaussian models and general factormodels. Proving existence of solutions of ergodic type Bellman equations we got the results constructing explicitly the optimal strategies from the solutions. As for linear Gaussian models we got the same results in the case of partial information as well by only using the informations of security prices.
2. In the case of partial information, using the information of only security prices, we obtained maximum principle as necessary conditions for optimality for the problems on a finite time horizon
3. In the above case we showed that optimal strategies could be expressed explicitly by using the solution of Bellman equation with degenerate coefficients for conditionally Gaussian models
4. We showed semi-classical behavior of the minimum eigenvalues of Schrodinger operators on Wiener space can be captured in a similar way to the case of finite dimensions. By … More using similar idea we proved rough lower estimates holds for the minimum eigenvalues of the operators on path spaces (not pinned) on Riemannian manifolds. We also proved, by considering semi-classical limits on the pinned pathe space on Lie groups, that it implies that harmonic forms vanishes
5. We studied estimates of log derivatives of the heat kernels on Riemannian manifolds in which curvatures rapidly decrease enough and proved log Sobolev inequalities on path spaces. We also studied relationships between Brownian rough path and weak type poincare inequalities.
6. We studied optimization problems concerning exponential hedging in mathematical finance. In particular we calculated asymptotic expansion of the backward stochastic differential equations with respect to small parameter and obtained asymptotics of the optimal controls
7. We constructed optimal portfolio by getting higher order differentiability of the solutions of nonlinear partial differential equations arising from mathematical finance
8. We got interested in solving optimization problem by the methods of convex duality in mathematical finance and extended known. results in applying the methods to the case of partial information, or super hedging under constraints with respect to delta
9. We got the results on exsistence and uniqueness of viscosity solutions by deriving Euler equations as singular limits of minimum elements of minimization problems of functionals topologically equivalent. We got the Holder estimates of Lp viscosity solutions of fully nonlinear elliptic partial differential equation with super-linear growth with respect to first order derivatives.
10. We discussed hydrodynamic limits of critical surface models on walls and derived variational inequalities of evolution type. We also derived Alt-Caffarelli variational problems by proving large deviation principles for equilibrium systems of the critical surfaces with pinning. Less

  • Research Products

    (28 results)

All Other

All Publications (28 results)

  • [Publications] Hideo NAGAI: "Optimal strategies for risk-sensitive portfolio optimization problems for general factor models"SIAM Journal on Control and Optimization. 41. 1779-1800 (2003)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Hideo NAGAI: "Risk-sensitive portfolio optimization with full and partial information"Advanced Studies of Pure Mathematics. 41. 257-278 (2004)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Shigeki Aida: "On a certain semiclassical problem on Wiener spaces"Publications of Research Institute of Mathematical Science. 39. 365-392 (2003)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Shigeki Aida: "Semiclassical limit of the lowest eigenvalue of a Schrodinger operator on a Wiener space"Journal of Functional Analysis. 203. 401-424 (2003)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Jun Sekine: "An approximation for exponential hedging"Advanced Studies in Pure Mathematics. 41. 279-299 (2004)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] S.Koike: "Variational inequalities for leavable bounded-velocity control"Applied Mathematics and Optimizations. 48. 1-20 (2003)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] K.Kuroda: "Ergodic type Bellman equation of risk sensitive control and portfolio optimization on infinite time horizon"Optimal Control and Partial Differential Equations, Eds.Menaldi et al. IOS press, Amsterdam. 530-538 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] H.Nagai: "Risk-sensitive optimal investment problems with partial information on infinite time horizon"Recent developments in Mathematicl finance, Ed.J.Yong, World Scientific. 85-98 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] K.Kuroda: "Risk-sensitive portfolio optimization on infinite time horizon"Stochastics and Stochastics Reports. 73. 309-332 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] H.Nagai: "Risk-sensitive dynamic portfolio optimization with partial information on infinite time horizon"Annals of Applied Probability. 12. 1-23 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] S.Aida: "Short time asymptotics of a certain infinite dimensional diffusion process"Stochastic analysis and related topics VII The Silivri Workshop, Progress in Probability Birkhauser. 77-124 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] S.Aida: "An estimate of the gap of spectrum of Schrodinger operators which generate hyperbounded semigroups"J.Functional Analysis. 185. 474-526 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 仁科 一彦: "金融工学"大阪大学出版会. 88 (2003)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 舟木 直久: "ミクロからマクロへ1 界面モデルの数理"シュプリンガーフェアラーク東京. 300 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Hideo NAGAI: "Optimal strategies for risk-sensitive portfolio optimization problems for general factor models"SIAM Journal on Control and Optimization. 41. 1779-1800 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Hideo NAGAI: "Risk-sensitive portfolio optimization with full and partial information"Advanced Studies of Pure Mathematics. 41. 257-278 (2004)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Shigeki Aida: "On a certain semiclassical problem on Wiener spaces"Publications of Research Institute of Mathematical Science. 39. 365-392 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Shigeki Aida: "Semiclassical limit of the lowest eigenvalue of a Schrodinger operator on a Wiener space"Journal of Functional Analysis. 203. 401-424 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Jun Sekine: "An approximation for exponential Hedging"Advanced Studies in Pure Mathematics. 41. 279-299 (2004)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] S.Koike: "Variational inequalities for leavable bounded-velocity control"Applied Mathematics and Optimizations. 48. 1-20 (2004)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K.Kuroda: "Ergodic type Befman equation of risk sensitive control and portfolio optimization on infinite time horizon"Optimal Control and Partial Differential Equations (Eds. Menaldi et al.), (IOS press, Amsterdam). 530-538 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H.Nagai: "Risk-sensitive optimal investment problems with partial information on infinite time horizon"Recent developments in Mathematid finance. (Ed. J.Yong) (World Scientific). 85-98 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K Kuroda: "Risk-sensitive portfolio optimization on infinite time horizon"Stochastics and Stochastics Reports. 73. 309-332 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H.Nagai: "Risk-sensitive dynamic portfolio optimization with partial information on infinite time horizon"Annals of Applied Probability. 12. 1-23 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] S.Aida: "Short time asymptotics of a certain infinite dimensional diffusion process"Stochastic analysis and related topics VII The Silivri workshop", Progress in Probability, Birkhauser. 77-124 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] S.Aida: "Schrodinger operators which generate hyperbounded semigroups"J. of Functional Analysis. 185. 474-526 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Kazuhiko Nishina: "Financial Engineering"Osaka University press. 88 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Tadahisa Funaki: "Micro to Macro 1 Mathematics of critical surface models"Springer-Verlag, Tokyo. 300 (2002)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2005-04-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi