• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2004 Fiscal Year Final Research Report Summary

Geometry and Harmonic Analysis on Nilpotent Orbits

Research Project

Project/Area Number 13440046
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field Basic analysis
Research InstitutionKYOTO UNIVERSITY

Principal Investigator

NISHIYAMA Kyo  Kyoto University, Graduate School of Science, Associate Professor, 大学院・理学研究科, 助教授 (70183085)

Co-Investigator(Kenkyū-buntansha) MATSUKI Toshihiko  Kyoto University, Graduate School of Science, Professor, 大学院・理学研究科, 教授 (20157283)
SAITO Hiroshi  Kyoto University, Graduate School of Science, Professor, 大学院・理学研究科, 教授 (20025464)
OHTA Takuya  Tokyo Denki University, Faculty of Engineering, Professor, 工学部, 教授 (30211791)
SEKIGUCHI Jiro  Tokyo University of Agriculture and Technology, Faculty of Engineering, Professor, 工学部, 教授 (30117717)
YAMASHITA Hiroshi  Hokkaido University, Graduate School of Science, Professor, 大学院・理学研究科, 教授 (30192793)
Project Period (FY) 2001 – 2004
Keywordsnilpotent orbit / associated cycle / unitary representation / semisimple Lie groups / isotropy representation / invariant theory / dual pair / theta lifting
Research Abstract

(1)We describe the theta lifting of nilpotent orbits in the terms of invariant theory, and prove that (the closures of) some good liftings are normal variety and the action of the algebraic groups on them are multiplicity free. We also obtain a degree formula of the nilpotent orbits expressed by integrals.
A general theory of the lifting of coherent sheaves are constructed, and in particular we prove the preservation of the multiplicities of the support of coherent sheaves.
(2)For the indefinite unitary group U(p,p), we completely classify the spherical nilpotent orbits and at the same time we describe the structure of the function rings on them.
(3) We generalize the notion of theta lifting to general orbits other than nilpotent ones, and shed a light on the research of the complete understanding of the orbit correspondence. This includes an example of the unimodular congruence classes of the bilinear forms studied by Sekiguchi, Djokovic, Zhao.
At last, we summarize the research of each investigator.
Sekiguchi has studied the unimodular congruence classes of the bilinear forms from the view point of the invariant theory.
Ohta has clarified the correspondence between the orbits of complex reductive algebraic groups and its real forms.
More generally, he extends his research to the orbits of symmetric pairs.
Yamashita has investigated the relations between associated cycles of the unitary representations of semisimple Lie groups, their isotropy representations and generalized Whittaker vectors.

  • Research Products

    (11 results)

All 2005 2004 Other

All Journal Article (11 results)

  • [Journal Article] A remark on Schubert cells and the duality of orbits on flag manifolds.2005

    • Author(s)
      Toshihiko Matsuki
    • Journal Title

      J.Math.Soc.Japan 57

      Pages: 1-8

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Classification of spherical nilpotent orbits for U(p, p).2004

    • Author(s)
      Kyo Nishiyama
    • Journal Title

      J.Math.Kyoto Univ. 44

      Pages: 203-215

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Theta lifting of unitary lowest weight modules and their associated cycles.2004

    • Author(s)
      Kyo Nishiyama
    • Journal Title

      Duke Math.J. 125

      Pages: 415-465

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Classification of spherical nilpotent orbits for U(p,p).2004

    • Author(s)
      Kyo Nishiyama
    • Journal Title

      J.Math.Kyoto Univ. 44

      Pages: 203-215

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Theta lifting of unitary lowest weight modules and their associated cycles2004

    • Author(s)
      Kyo Nishiyama
    • Journal Title

      Duke Math.J. 125

      Pages: 415-465

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Theta lifting of nilpotent orbits for symmetric pairs.

    • Author(s)
      Kyo Nishiyama
    • Journal Title

      Trans.AMS. (発表予定)

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] A note on affine quotients and equivariant double fibrations

    • Author(s)
      Kyo Nishiyama
    • Journal Title

      Proceedings of Japanese-German Seminar on Infinite-Dimensional Harmanic Analysis (発表予定)

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Restriction of admissible representations

    • Author(s)
      Hiroshi Saito
    • Journal Title

      Proceeding of Hyderabad conference (発表予定)

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Theta lifting of nilpotent orbits for symmetric pairs.

    • Author(s)
      Kyo Nishiyama
    • Journal Title

      Trans.AMS. (to appear)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] A note on affine quotients and equivariant double fibrations.

    • Author(s)
      Kyo Nishiyama
    • Journal Title

      Proceedings of Japanese-German Seminar on Infinite-Dimensional Harmanic Analysis (to appear)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Restriction of admissible representations.

    • Author(s)
      Hiroshi Saito
    • Journal Title

      Proceeding of Hyderabad conference (to appear)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2006-07-11  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi