• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2003 Fiscal Year Final Research Report Summary

A Metaphoric Search Method for HTML documents

Research Project

Project/Area Number 13480086
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field Intelligent informatics
Research InstitutionHokkaido University

Principal Investigator

HARAGUCHI Makoto  Hokkaido Univ., Graduate School of Engineering, Professor, 大学院・工学研究科, 教授 (40128450)

Co-Investigator(Kenkyū-buntansha) SADOHARA Ken  National Institute of Advanced Industrial Science and Technology, Researcher, 研究員 (90344168)
OKUBO Yoshiaki  Hokkaido Univ., Graduate School of Engineering, Instructor, 大学院・工学研究科, 助手 (40271639)
Project Period (FY) 2001 – 2003
KeywordsMetaphorical Search / HTML documents / Concept Graph Representation / Similarity among texts
Research Abstract

Normally, it is troublesome task for users of search engines to represent their intention explicitly beforehand. This is one of major reasons why the search results do not meet user's intention in many cases. Instead of presenting queries describing those intentions precisely, we suppose as a query a pair of an abstract query and its examples. What to be searched is an instance of the abstract one similar to the examples. In other words, our search task is to "find an instance of the abstract one like examples". An HTML document, the object of our search task, can be viewed as a rooted tree of tags with some text contents as its leaves. In order to judge the similarities between text contents and tag structure as well, we consider an ordering on the class of concept graph representations. Both instance generalization relationship and similarity relationship can be defined in terms of the ordering. Based on this fundamental structure of objects for our search problem, we have developed an algorithm to find an instance of abstract query, given its examples. That is, it first computes a set of segments of sentences in text contents from the abstract query Secondly, by matching those text segments, it forms an instance of the query that is a generalization of the given example documents. Finally, any document subsumed by the instance is regarded relevant to the initial query Our experimental result shows that it can compute the generalized document of about 50 sentences within 3 seconds.

  • Research Products

    (10 results)

All Other

All Publications (10 results)

  • [Publications] 原口誠: "概念階層構築における人と機械の違い"人工知能学会誌. 18(5). 537-541 (2003)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M.HARAGUCHI, M.YOTSUTANI, M.YOSHIOKA: "Towards an Organization and Access Method of Story Databases"Proc.7th World Multiconference on Systematics, Cybernetics and Informatics. 213-216 (2003)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Y.Kudo, M.Haraguchi, Y.Okubo: "Data Abstractions for Decision Tree Induction"Theoretical Computer Science. 292(2). 387-416 (2003)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Y.Okubo, Y.Kudoh, M.Haraguchi: "Constructing Appropriate Data Abstractions for Mining Classification Knowledge"Springer LNAI 2543 (Web-Knowledge Management and Decision Support). 276-289 (2003)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 大久保 好章, 森田 展博, 原口 誠: "類似性の観察に基づく知識ベースの内包的エラー修正法"人工知能学会誌. 18. 1-14 (2003)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M.Haraguchi: "Can a Machine Produce Appropriate New Concepts?"Journal of the Japanese Society for Artificial Intelligence. 18(5). 537-541 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M.Haraguchi, S.Nakano.M.Yoshioka: "Discovery of Maximal Analogies between Stories"Proc.of the 5th Int'1 Conf.on Discovery Science (Springer LNCS). 2534. 324-331 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Y.Kudo, M.Haraguchi, Y.Okubo: "Data Abstractions for Decision Tree Induction"Theoretical Computer Science (Elsevier Science). 292(2). 387-416 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Y.Okubo, Y.Kudoh, M.Haraguchi: "Constructing Appropriate Data Abstractions for Mining Classification Knowledge"Web-Knowledge Management and Decision Support -14th Int'l Conf.on Applications of Prolog, Revised Papers (Springer LNA). 2543. 276-289 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Y.Okubo, N.Morita, M.Haraguchi: "Similarity-Driven Knowledge Revision for Intentional Errors"Trans.of the Japanese Society for Artificial Intelligence. 18. 1-14 (2003)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2005-04-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi