• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2002 Fiscal Year Final Research Report Summary

Psychometric Studies on Quantification and Simple Structure Analysis of Multivariate Categorical Data

Research Project

Project/Area Number 13610176
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field 教育・社会系心理学
Research InstitutionKoshien University

Principal Investigator

ADACHI Kohei  Koshien University, Department of Psychology, Associate Professor, 人間文化学部, 助教授 (60299055)

Project Period (FY) 2001 – 2002
Keywordsmultivariate analysis / optimal quantification / correspondence analysis / orthogonal rotation / oblique rotation / categorical data / goodness-of fit / correct classification rates
Research Abstract

The purpose of this project was to study the rotation of the solution in multiple correspondence analysis (MCA). We first proposed an orthogonal rotation method for giving simple structure to a variables by dimensions matrix of indices to be interpreted. Here, the Orthomax criterion is used for defining simplicity. The method is classified into a category option and an item option, according whether the entities regarded as variables are categories or items. In the former option, category scores are used as indices, while discrimination measures are used in the latter option.
The solution can be rotated obliquely, if MCA is formulated as a method for the low-rank approximation of indicator matrices. Thus, we next proposed an oblique rotation method using the Promax criterion. This method is also classified into the two options. In the category option, the cosines between category data vectors and object score vectors are used as the indices to be interpreted, whereas the cosines between the sub-spaces for items and object score vectors are used in the item option. We found the usefulness of the above orthogonal and oblique rotation methods in their applications to real data.
Additionally, we studied goodness-of-fit (GOF) measures of the MCA solution and proposed to use a correct classification rate (CCR) as the measure. CCR is defined as the proportion of the cases where objects are classified into correct categories according to the solution. Simulation analysis showed the superiority of CCR to other eigenvalue-based GOF measures.

  • Research Products

    (13 results)

All Other

All Publications (13 results)

  • [Publications] K.Adachi: "Oblique promax rotation applied to the solution in multiple correspondence analysis"Behaviormetrika. (近刊).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 足立浩平: "対応分析と多重対応分析と同時対応分析"心理学評論. (近刊).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] K.Adachi: "Optimal quantification of a longitudinal indicator matrix : homogeneity and smoothness analysis"Journal of Classification. 19・2. 215-248 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 足立浩平: "心理統計学と多変量データ解析"計算機統計学. 14・2. 139-161 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 足立浩平(分担執筆): "心理統計の技法"福村出版, 渡部洋(編). 32-42,216-229 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] K.Adachi(分担執筆): "Measurement and Multivariate Analysis"Springer, S. Nishisato, Y. Baba, H. Bozdogan, K. Kanefuji(編). 47-56 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] K.Adachi(分担執筆): "New Developments in Psychometrics"Springer, H. Yanai, A. Okada, K. Shigemasu, Y. Kano, J. J. Meulman(編). 503-510 (2003)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Adachi, K.: "Oblique promax rotation applied to the solution in multiple correspondence analysis"Behaviormetrika. (published near fixture).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Adachi, K.: "Correspondence analysis, multiple correspondence analysis, and joint correspondence analysis"Japanese Psychological Review (in Japanese). (published near future).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Adachi, K.: "Optimal quantification of a longitudinal indicator matrix : homogeneity and smoothness analysis"Journal of Classification. 19-2. 215-248 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Adachi, K.: "Psychometrics and multivariate data analysis."Bulletin of the Computational Statistics of Japan (in Japanese). 14-2. 139-161 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Adachi, K., Ed. H. Yanai, A. Okada, K. Shigemasu, Y. Kano & J. J. Meulman: "A latent variable model for multidimensional unfolding, New developments in psychometrics"Springe. 503-510 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Adachi, K., Ed. S. Nishisato, Y. Baba, H. Bozdogan & K. Kanefuji: "Homogeneity and smoothness analysis for quantifying a longitudinal categorical variable., Measurement and multivariate analysis"Springer. 47-56 (2002)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2004-04-14  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi