• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2003 Fiscal Year Final Research Report Summary

Moduli Spaces and Special Functions

Research Project

Project/Area Number 13640002
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionHokkaido University

Principal Investigator

MATSUMOTO Keiji  Hokkaido Univ., Grad.School of Sci., Asso.Prof., 大学院・理学研究科, 助教授 (30229546)

Co-Investigator(Kenkyū-buntansha) SHIMADA Ichiro  Hokkaido Univ., Grad.School of Sci., Asso.Prof., 大学院・理学研究科, 助教授 (10235616)
SAITO Mutsumi  Hokkaido Univ., Grad.School of Sci., Asso.Prof., 大学院・理学研究科, 助教授 (70215565)
MAEDA Yoshitaka  Hokkaido Univ., Grad.School of Sci., Asso.Prof., 大学院・理学研究科, 助教授 (60173720)
Project Period (FY) 2001 – 2003
KeywordsModuli Space / Theta Function / Hypergeometric Function / Period Map / Configuration Space / Automorphic Form / Fundamental Group
Research Abstract

The head of investigator MATSUMOTO Keiji constructed period maps and automorphic forms derived from the inverses of period maps for certain families of algebraic varieties by using Prym varieties of algebraic curves.
In fact, it was shown that the period map for the family of smooth cubic surfaces could be expressed in terms of periods of the Prym varieties for curves of genus 10. Automorphic forms on the 4-dimensional complex ball giving the inverse of this period map were expressed by theta constants associated to the Prym varieties.
For the family of the 4-fold coverings of the complex projective line branching at eight points, the period map from this family to the 5-dimensional complex ball was constructed by using the Prym varieties of these curves. Automorphic forms on the 5-dimensional complex ball giving the inverse of this period map were expressed by theta constants associated to the Prym varieties.
SAITO Mutsumi showed that the ring of differential operators on affine tone varieties and the algebra of symmetries of the system of A-hypergeometric differential equations were anti-isomorphic, and classified systems of A-hypergeometric differential equations combinatonally under these symmetries. He studied the condition that the graded ring gr(D(R_A)) was finitely generated, and gave the composition factors of the ring R_A of functions on any tone variety as a D(R_A)-module.
SHIMADA Ichiro showed that if the singularity of each singular fiber was not bad for an algebraic fiber space, the boundary homomorphism from the second homotopy group of the base space to the fundamental group of any general fiber could be constructed. He showed that the fundamental group of the complement of a resultant hypersurface was commutative. He also showed that any supersingular K3 surface could be expressed as a branched double cover of the projective plane.

  • Research Products

    (12 results)

All Other

All Publications (12 results)

  • [Publications] K.Matsumoto: "Theta constants associated to cubic threefolds"J.Algebraic Geom.. 12. 741-775 (2003)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] K.Matsumoto: "Invariants for some real hyperbolic groups"Internat.J.Math. 13. 415-443 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] K.Matsumoto: "Theta constants associated with the cyclic triple coverings of the complex projective line branching at six points"Publ.RIMS.Kyoto Univ.. 37. 419-440 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M.saito: "Logarithm-free A-hypergeometric series"Duke Math.J.. 115. 53-73 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M.Saito: "Isomorphism classes of A-hypergeometric systems"Compositio Math.. 128. 323-338 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] I.Shimada: "The fundamental group of the complement of the resultant hypersurface"Pacific J.Math.. 210. 351-357 (2003)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] K.Matsumoto: "Theta constants associated to cubic threefolds"J.Algebraic Geom.. 12. 741-775 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K.Matsumoto: "Invariants for some real hyperbolic groups"Internat.J.Math.. 13. 415-443 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K.Matsumoto: "Theta constants associated with the cyclic triple coverings of the complex projective line branching at six points"Publ.RIMS.Kyoto Univ.. 37. 419-440 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M.Saito: "Logarithm-free A-hypergeometnc series,"Duke Mathematical Journal. 115. 53-73 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M.Saito: "Isomorphism classes of A-hypergeometnc systems"Compositio Math.. 128. 323-338 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] I.Shimada: "The fundamental group of the comple ment of a resultant hypersurface"Pacific J.Math.. 210. 351-357 (2003)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2005-04-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi