• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2003 Fiscal Year Final Research Report Summary

Algebro-Geometric Method in Commutative Algebra

Research Project

Project/Area Number 13640005
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionTohoku University

Principal Investigator

HARA Nobuo  Tohoku University, Graduate School of Science, Associate Professor, 大学院・理学研究科, 助教授 (90298167)

Co-Investigator(Kenkyū-buntansha) YOSHIDA Ken-ichi  Nagoya University, Graduate School of Mathematics, Assistant, 大学院・多元数理科学研究科, 助手 (80240802)
WATANABE Kei-ichi  Nihon University, College of Humanities and Sciences, Professor, 文理学部, 教授 (10087083)
Project Period (FY) 2001 – 2003
KeywordsTight closure / F-singularity / test ideal / multiplier ideal / positive characteristic / commutative algebra / algebraic geometry / Rees algebra
Research Abstract

We reinterpreted the theory of tight closure in prime characteristic commutative algebra from the viewpoint of singularity theory and birational geometry. Namely, we generalized the concepts of tight closure and F-singularities, gave foundation to the theory thereof, and applied it to problems in commutative algebra and al-gebraic geometry. Our results are summarized as follows:
1.Study of F-singularities of Rees algebras : There have been few researches on Rees algebras from a geometric viewpoint, although a Rees algebra is a geometric object in the sense that its "Proj" gives a blow-up. Taking this into account, we studied ring-theoretical and geometric aspects of Rees algebras R(1) associated to an in-primary ideal I of a normal local ring (R,m) in terms of miscellaneous methods such as F-singularities, blow-up and desingularization.
2.A generalization of tight closure : We generalized the notion of the tight closure of an ideal in a ring R of characteristic p to those of "D-tight clo … More sure" associated to an effective Q-divisor D on Spec R and of "I-tight closure" associated to an ideal I of R. We established foundation of the theory of I-tight closure and the ideal r(I) defined via I-tight closure, and proved various properties of the ideal -r(I) such as Skoda's theorem, restriction theorem and subadditivity.
3.Applications of I-tight closure : We considered the global generation of adjoint bundles K_X+nL of a polarized variety (X, L), as an application of a variant of Skoda's theorem in the canonical module of the section ring of (X,L). In particular, we obtained an alternative proof of K.E.Smith's result on a special case of Fujita's conjecture in characteristic p, assuming that Litself is spanned.
We also constructed a characteristic p analog T(‖I.‖) of the asymptotic multiplier ideal associated to a filtration of ideals I.={I_n|n= 1,2,...}. As an application, we reinterpret the result on the uniform behavior of symbolic powers due to Ein-Lazarsfeld-Smith and Hochster-Huneke. Less

  • Research Products

    (12 results)

All Other

All Publications (12 results)

  • [Publications] N.Hara, K.E.Smith: "The strong test ideal"Illinois J.Math.. 45. 949-964 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] N.Hara, K.-i.Watanabe, K.Yoshida: "F-rationality of Rees algebras"J.of Algebra. 247. 153-190 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] N.Hara, K.-i.Watanabe, K.Yoshida: "Rees algebras of F-regular type"J.of Algebra. 247. 191-218 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] N.Hara, K.-i.Watanabe: "F-regular F-pure rings vs.log terminal and log canonical singularities"J.Algebraic Geometry. 11. 363-392 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] N.Hara, K.Yoshida: "A generalization of tight closure and multiplier ideals"Trans.Amer.Math.Soc.. 355. 3143-3174 (2003)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] N.Hara: "A characteristic p analog of multiplier ideals and applications"Comm.in Algebra. 印刷中. (2004)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] N.Hara, K.E.Smith: "The strong test ideal"Illinois J.Math.. 45. 201-211 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] N.Hara, K.-i.Watanabe, K.Yoshida: "F-rationality of Rees algebras"J.Algebra. 247. 153-190 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] N.Hara, K.-i.Watanabe, K.Yoshida: "Rees algebras of F-regular type"J.Algebra. 247. 191-218 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] N.Hara, K.-i.Watanabe: "F-regular and F-pure rings vs.log terminal and log canonical singularitis"J.Algebraic Geometry. 11. 363-392 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] N.Hara, K.Yoshida: "A generalization of tight closure and multiplier ideals"Trans.Amer.Math.Soc.. 355. 3143-3174 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] N.Hara: "A characteristic p analog of multiplier ideals and applications"Comm.in Algebra. (to appear). (2004)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2005-04-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi