• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2002 Fiscal Year Final Research Report Summary

The cohomslogy group of the classifying space

Research Project

Project/Area Number 13640006
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionIBARAKI UNIVERSITY

Principal Investigator

YAGITA N  IBARAKI Univ., College of Education, professor, 教育学部, 教授 (20130768)

Co-Investigator(Kenkyū-buntansha) KANEDA M  Osaka City Univs., Fawlty of Nat., Sceince professor, 理学部, 教授 (60204575)
KUDOU K  IBARAKI Univ., College of Education, Lecturer, 教育学部, 講師 (00114017)
OKAYASU T  IBARAKI Univ., College of Education, associate professor, 教育学部, 助教授 (00191958)
TEZUKA M  Ryukyus Univer., Fawlty of Nat., Sceince professor, 理学部, 教授 (20197784)
Project Period (FY) 2001 – 2002
KeywordsCohomology group / Classifying space / BP-theory / Chow ring
Research Abstract

For a smooth complex algebraic variety X, the group CH^I(X) of codimension I algebraic cycles modulo rational equivalence assemble to the Chow ring CH^*(X) = Σ_iCH^I(X). Totaro constructed a map c^^~l : CH^*(X) → BP^*(X) 【cross product】_<BP>・ Z_<(p)> such that the composition
cl : CH^I(X)_<(p)> →^^<c^^~l> BP^*(X) 【cross product】_<BP>・ Z_<(p)> → H^*(X)_<(p)>
coincides with the cycle map. One of the main results of Totaro's paper is that there is a space X = BG for which the kernel of cl contains p-torsion elements. Here the Chow ring of a classifying space BG is defined [Tol,To2] as the limit Lim_<m→∞>CH^*((c^m - s)/G) of a system of algebraic varieties where G acts on C^m - S freely and codim(S) → ∞ as m → ∞. The group Totaro uses is G = Z/2 × 2^<1+4>_+, where 2^<1+4>_+ is the extraspecial 2-group of order 32, which is isomorphic to the central product of two copies of the dihedral group D_8 of order 8. Similar facts hold for the extraspecial 2-groups G = 2^<1+2n>_+ of order 2<1+2n>.
Totaro computed the Chow rings of abelian groups and symmetric groups in and he and Pandharipande determined the Chow rings of O(n), SO(2n+1) aud SO(4). For these cases the cycle maps c^~l are isomorphisms, namely, CH^*(BG)_<(2)> =^~ BP^*(BG) 【cross product】_BP・Z_<(2)>. Field also determined the Chow ring of BSO(2n), but its BP-theory is unknown for n > 3. Vezzosi has shown that d^~ is epimorphic for X = BPGL_3c, p = 3. Totaro also gives many interesting theorems to study CH*(BG) in

  • Research Products

    (12 results)

All Other

All Publications (12 results)

  • [Publications] N.Yagita: "Chow ring of classifying spaces of extra p-groups"Contemp. Math.. 293. 397-403 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] D.Aletaz: "Integral cohomology and Chern classes"Math. Proc. Cambridge Philos. Soc.. 131. 445-457 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] B.Schuster: "Transfers of Chern classes in BP-cohomology and Chow ring"Trans. AMS. 353. 1039-1054 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] K.Kudou: "Note on homotopy normality"Kyushu J. Math.. 55. 119-129 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M.Kaneda: "A twisting character formula for Demazre modules"Transform. Group. 7. 32-341 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] H.Andersen: "Filtrations on G1T-modules"Proc. London Math. Soc.. 82. 614-646 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Nyagita: "Chow ring of classifying spaces of extraspecial P-groups."Comtemp, Math.. 293. 397-403 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Darletaz, C.Ausoni, Mimura, N.Yagita: "Integral cohomology and chern classes of the special linear groups over the ring of integers."Math. Prcc. Cambridge Phil. Sec.. 131. 445-457 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] B.Schuster and N.Yagita: "Transfers of chern classes in BP-theory and chow vings."Trans. Amer. Math. Soc. 353. 1039-1054 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H.Oshima and N.Yagita: "Non commutatiidy of oelf homotopy group."Kodai J. Math.. 24. 15-25 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K.Kudou and N.Yagita: "Note on homolopy romality and n-connected fiber space"Kyusyu J. Math.. 55. 119-129 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H.Andersen and M.Kaneda: "Filtrations on G*T-modules"Proc. London Math. Soc. 82. 614-646 (2001)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2004-04-14  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi