• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2003 Fiscal Year Final Research Report Summary

Study of blowing-aps.

Research Project

Project/Area Number 13640034
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionTokyo Metropolitan University

Principal Investigator

KAWASAKI Takeshi  Tokyo Metropolitan University, Graduate School of Science, assistant, 理学研究科, 助手 (40301410)

Co-Investigator(Kenkyū-buntansha) TERAO Hiroaki  Tokyo Metropolitan University, Graduate School of Science, professor, 理学研究科, 教授 (90119058)
KURANO Kazuhiko  Meiji University, school of soi. and teohv, professor, 理工学部, 教授 (90205188)
Project Period (FY) 2001 – 2003
KeywordsCohen-Macaulay ring / excellent ring / Rees algebra / dualzing complex / Cousin complex
Research Abstract

Let A be a Noetherian ring and I an ideal of A. If I is of positive height and the Rees algebra R(I) of I is Cohen-Macaulay, then R(I) is called an Arithmetic Cohen-Macaulayfication of A. We give a necessary and sufficient condition for A to have an arithmetic Macaulayfication. That is, A has an arithmetic Macaulayfication if and only if A satisfies
(C1)A is universally catenary ;
(C2)all the formal fiber of any localization of A are Cohen-Macaulay ;
(C3)the Cohen-Macaulay locus of any finitely generated A-algebra B is open in Spec B ;
(QU)for any pair of prime ideals p ⊂ q, ht q = ht q/p + ht p ;
(UM)A has no embedded primes.
In consequence of this result, we show that A is a homomorphic image of a Cohen-Macaulay ring if and only if A satisfies (C1)-(C3) and
(CD)A has a codimension function.

  • Research Products

    (2 results)

All Other

All Publications (2 results)

  • [Publications] Kawasaki, Takesi: "On arithmetic Cohen-Macaulayfication of Noetherian rings"Trans.Amer.Math.Soc.. 354. 123-149 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Kawasaki, Takesi: "On arithmetic Macaulayfication of Noetherian rings"Trans.Amer.Math.Soc.. 123-149 (2002)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2005-04-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi