• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2002 Fiscal Year Final Research Report Summary

Rigidity of discrete groups and index theorems

Research Project

Project/Area Number 13640057
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Geometry
Research InstitutionTohoku University

Principal Investigator

IZEKI Hiroyasu  Tohoku University, Mathematical Institute, Ass. Prof., 大学院・理学系研究科, 助教授 (90244409)

Co-Investigator(Kenkyū-buntansha) FUJIWARA Koji  Tbhoku University, Mathematical Institute, Ass. Prof., 大学院・理学系研究科, 助教授 (60229078)
KOTANI Motoko  Tohoku University, Mathematical Institute, Ass. Prof., 大学院・理学系研究科, 助教授 (50230024)
SUNADA Toshikazu  Tohoku University, Mathematical Institute, Prof., 大学院・理学系研究科, 教授 (20022741)
NAYATANI Shin  Nagoya University, Graduate School of Mathematics, Ass. Prof., 大学院・多元数理科学研究科, 助教授 (70222180)
NAKAGAWA Yasuhiro  Tohoku University, Mathematical Institute, Lect., 大学院・理学系研究科, 講師 (90250662)
Project Period (FY) 2001 – 2002
Keywordsdiscrete groups / rigidity / index theorem / harmonic map / conformally flat / Kleinian group
Research Abstract

The purpose of this project was to investigate the rigidity of discrete groups from the viewpoint of geometry of the ideal boundary of negatively curved spaces and the cohomology of discrete groups. Our main result is summarized as follows.
Let Γ be a Kleinian group acting on n-sphere. If Γ is convex cocompact, the quotient of the domain of discontinuity is compact by definition. However, the converse is not true in general. Izeki (head investigator) showed that if the Hausdorff dimension of the limit set of Γ is less than n/2 and the quotient of the domain of discontinuity is compact, then Γ is convex cocompact. As a consequence, such a Γ is quasiconformally stable. We also gave several applications to topology and geometry of conformally flat manifolds with positive scalar curvature. In case the Hausdorff dimension of the limit set is less than (n - 2) /2, we found a proof using the index theorem for higher A-genus.
We also developed another approach to rigidity problems, which uses harmonic maps from a simplicial complex to a negatively curved metric space. We obtained a fixed-point theorem for a lattice in a p-adic Lie group, which should be regarded as a generalization of Margulis superrigidity.

  • Research Products

    (36 results)

All Other

All Publications (36 results)

  • [Publications] 井関 裕靖: "高次元のクライン群の極限集合のハウスドルフ次元-収束指数と凸ココンパクト性-"数理解析研究所講究録. 1223. 61-68 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 井関 裕靖: "Convex-cocompactness of Kleinian groups and conformally flat Riemannian manifolds with positive scalar curvatur"Proc.Amer.Math.Soc.. 130. 3731-3740 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 井関 裕靖: "組み合わせ調和写像と超剛性(納谷信氏と共著)"数理解析研究所講究録. 1270. 182-194 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 砂田 利一: "The pressure and higher correlations for an Anosov diffeomorphisms, (with M.Kotani)"Ergod Th.Dynam.Sys.. 21. 807-821 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 砂田 利一: "Geometric aspects of large deviations for random walks on a crystal lattice (with M.Kotani)"Microlocal Analysis and Complex Fourier Analysis (Eds.T.Kawai and K.Fujita):プロシーディング. 186-199 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 小谷 元子: "A note on asymptotic expansions for closed geodesics in homology classes"Math.Ann. 320. 507-529 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 小谷 元子: "A central limit theorem for magnetic transition operators on a crystal. lattice"J.London Math.Soc.. 65. 464-482 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 藤原 耕二: "The second bounded cohomology of 3-manifold groups (with K.Ohshika)"Publ.Res.Inst.Math.Sci.. 38. 347-354 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 藤原 耕二: "Bounded classes in the cohomology of manifolds (with T.Soma)"Geom.Dedicata. 92. 73-85 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 藤原 耕二: "Bounded cohomology of subgroups of mapping class groups (with M.Bestvina)"Geom and Topol.. 6. 69-89 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 藤原 耕二: "On the outer automorphism group of a hyperbolic group"Israel J.of Math. 131. 277-284 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 中川 泰宏: "Characters of automorphism groups associated with Kahler classes and functionals with cocycle conditions (with A.Futaki)"Kodai Math J. 24. 1-14 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 中川 泰宏: "An obstruction to semistability of manifolds (with T.Mabuchi)"Proc.Japan Acad.SerA. 77. 47-49 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 中川 泰宏: "Bando-Calabi-Futaki Characters of compact toric manifolds"Tohoku Math J. 53. 479-490 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 中川 泰宏: "The Bando-Calabi-Futaki character as an obstruction to semistability (with T.Mabuchi)"Math.Ann.. 324. 187-193 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 中川 泰宏: "The Bando-Calabi-Futaki character and its lifting to a group character"Math.Ann.. 325. 31-53 (2003)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 納谷 信Nayatani Shin): "Quaternionic analogue of CR geometry (With H.Kondo)"Semin. Theor. Spectr. Geom.. 19. 41-52 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 納谷 信: "四元数CR幾何"大阪大学数学講義録(竹内勝先生メモリアル研究会). 7. 233-253 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] H.Izeki: "Hausdorff dimension of the limit set of a higher dimensional Kleinian group (in Japanese)"Suuriken Koukyuuroku. 1223. 61-68 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H.Izeki: "Convex-cocompactness of Kleinian groups and conformally flat manifolds with positive scalar curvature"Proc. Amer. Math. Soc.. 130. 3731-3740 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H.Izeki: "Combinatorial harmonic maps and superrigidity (in Japanese)"Suuriken Koukyuuroku,with S.Nayatani. 1270. 182-194 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.Sunada and M.Kotani: "The pressure and higher correlations for an Anosov diffeomorphism"Ergod. Th. Dynam. Sys.. 21. 807-821 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.Sunada and M.Kotani: "Geometrical aspect of large deviation for random walks on a crystal lattice"Microlocal Analysis and Complex Fourier Analysis, Eds T.Kawai and K.Fujita, World Scientific Prb. Singapore. 186-199 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M.Kotani: "A noto on asymptotic expansions for closed geodesics in homology classes"Math. Ann.. 320. 507-529 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M.Kotani: "A central limit theorem for magnetic transition operators on a crystal lattice"J. London. Math. Soc.. 65. 464-482 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K.Fujiwara and K.Ohshika: "The second bounded cohomology of 3-manifold groups"Publ. Res. Inst. Math. Sci.. 38 no.2. 347-354 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K.Fujiwara and T.Soma: "Bounded classes in the cohomology of manifolds"Geom. Dedicata. 92. 73-85 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K.Fujiwara and M.Bestvina: "Bounded cohomology of subgroups of mapping class groups"Geometry and Topology. 6. 69-89 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K.Fujiwara: "On the outer automorphism group of a hyperbolic group"Israel J of Math.. 131. 277-284 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Y.Nakagawa and A.Futaki: "Characters of automorphism groups associated with Kahler classes and functionnals with cocycle conditions"Kodai Math. J.. 24. 1-14 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Y.Nakagawa and T.Mabuchi: "An obstruction to semistability of manifolds"Proc. Japan Acad.. 77, Ser.A. 47-49 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Y.Makagawa: "Bando-Calabi-Futaki character of compact toric manifolds"Tohaku Math. J.. 53. 479-490 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Y.Nakagawa and T.Mabuchi: "The Bando-Calabi-Futaki character as an obstruction to semistability"Math. Ann.. 324. 187-193 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Y.Nakagawa: "The Bando-Calabi-Futaki character and its lifting to a group character"Math. Ann.. 325. 31-53 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] S.Nayatani and H.Kamada: "Quaternionic analogue of CR geometry"Semin. Theor. Spectr. Geom.. 19. 41-52 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] S.Nayatani: "Quaternionic CR geometry (in Japanese)"Proceedings of "Workshop on memories of Prof. Masaru Takeuchi" (Lecture Notes in Math. Osaka Univ.). 7. 233-253 (2002)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2004-04-14  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi