• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2004 Fiscal Year Final Research Report Summary

Studies of glued Riemannian manifolds

Research Project

Project/Area Number 13640068
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Geometry
Research InstitutionNiigata University

Principal Investigator

INNAMI Nobuhiro  Niigata University, Faculty of Sciences, Professor, 理学部, 教授 (20160145)

Co-Investigator(Kenkyū-buntansha) SEKIGAWA Kouei  Niigata University, Faculty of Sciences, Professor, 理学部, 教授 (60018661)
Project Period (FY) 2001 – 2004
Keywordsgeometru of geodesics / Riemannian geometry
Research Abstract

We find what rendition on gradient vector fields characterizes warped products, Riemannian products and round spheres. To do this we apply the theory of Jacobi equations without conjugate points to the differential maps of the local one-parameter groups generated by gradient vector fields.
We say that a manifold M is a glued manifold if M is a union of complete connected manifolds which are glued at their boundary Geodesies in a glued Riemannian manifold M are by definition locally minimizing curves in M. The variation vector fields through geodesies satisfy the Jacobi equation in each component manifold In this project we find the equation which show how Jacobi vector fields change in passing across the boundary of a component manifold into the neighboring component As an application we characterize glued Riemannian manifolds whose glued boundary separates conjugate points.
Circles and Ellipses has been characterized by some properties of billiard ball trajectories. Those properties have been discussed in connection with the characterization of flat metrics on tori by some families of geodesics and tori of revolution. The main method is the geometry of geodesies due to H.Busemann which was reconstructed in the configuration space by V.Bangert. In particular, the theory of parallels plays an important role in this work. Roughly speakin, there exists a foliation of parallels in the configuration space for billiards if and only if there exists a foliation of non-null homotopic curves in the phase space which is invariant under the billiard ball map.

  • Research Products

    (12 results)

All 2004 2003 2002 2001

All Journal Article (12 results)

  • [Journal Article] Notes on strictly almost Kahler Einstein manifolds of dimension four2004

    • Author(s)
      T.Oguro
    • Journal Title

      Yokohama Math.J. 51

      Pages: 19-27

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Notes on strictly almost Kahler Einstein manifolds of dimension four2004

    • Author(s)
      T.Oguro, K.Sekigawa
    • Journal Title

      Yokohama Math.J. 51

      Pages: 19-27

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Notes on Kahler surfaces with distinct constant Ricci eigenvalues2003

    • Author(s)
      T.Nihonyanagi
    • Journal Title

      J.Korean Math.Soc. 40

      Pages: 1015-1029

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Notes on Kahler surfaces with distinct constant Ricci eigenvalues2003

    • Author(s)
      T.Nihonyanagi T.Oguro, K.Sekigawa
    • Journal Title

      J.Korean Math.Soc. 40

      Pages: 1015-1029

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Geometry of geodesics for convex billiards and circular billiards2002

    • Author(s)
      Nobuhiro Innami
    • Journal Title

      Nihonkai Math.J 13

      Pages: 73-120

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] On 4-dimensional CR-submanifolds of a 6-dimensional sphere. Minimal surfaces2002

    • Author(s)
      H.Hashimoto
    • Journal Title

      Adv.Studies in Pure Math 34

      Pages: 143-154

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Geometry of geodesics for convex billiards and circular billiards2002

    • Author(s)
      Nobuhiro Innami
    • Journal Title

      Nihonkai Math.J. 13, 1

      Pages: 73-120

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] On 4-dimensional CR-submanifolds of a 6-dimensional sphere. Minimal surfaces2002

    • Author(s)
      H.Hashimoto, K.Mashimo, K.Sekigawa
    • Journal Title

      Adv.Studies in Pure Math. 34

      Pages: 143-154

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Jacobi vector fields along geodesics in glued Riemannian manifolds2001

    • Author(s)
      Nobuhiro Innami
    • Journal Title

      Nihonkai Math.J. 12

      Pages: 101-112

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Gradient vector fields which characterize warped products2001

    • Author(s)
      Nobuhiro Innami
    • Journal Title

      Math.Scand. 88

      Pages: 182-192

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Gradient vector fields which characterize warped products2001

    • Author(s)
      Nobuhiro Innami
    • Journal Title

      Math.Scan. 88

      Pages: 182-192

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Jacobi vector fields along geodesies in glued Riemannian manifolds2001

    • Author(s)
      Nobuhiro Innami
    • Journal Title

      Nihonkai Math.J. 12, 2

      Pages: 101-112

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2006-07-11  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi