• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2002 Fiscal Year Final Research Report Summary

Geometry of the Laplace operator

Research Project

Project/Area Number 13640069
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Geometry
Research InstitutionShizuoka University

Principal Investigator

KUMURA Hironori  Shizuoka University, Faculty of Science, Associate Professor, 理学部, 助教授 (30283336)

Co-Investigator(Kenkyū-buntansha) AKUTAGAWA Kazuo  Shizuoka University, Faculty of Science, Associate Professor, 理学部, 助教授 (80192920)
SATO Hiroki  Shizuoka University, Faculty of Science, Professor, 理学部, 教授 (40022222)
KASUE Atsushi  Kanazawa Universityk, Faculty of Science, Professor, 理学部, 教授 (40152657)
OKUMURA Yoshihide  Shizuoka University, Faculty of Science, Associate Professor, 理学部, 助教授 (90214080)
Project Period (FY) 2001 – 2002
KeywordsLaplace operator / heat kernel / Green kernel / spectrum / Sobolev inequality
Research Abstract

Kumura studied the relationship between analytic inequalities of noncompact Riemannian manifolds or compact Riemannian manifolds with boundary and its geometric information. To be concrete, he gave an intrinsic ultracontractive bound for compact Riemannian manifolds with nonconvex boundary, using their inner geometric property, by the arguments of Davies - Simon 1984. In order to do so, two inequalities, Hardy and Sobolev should be prepared. These inequalities are important. Indeed, for example, these induce an upper bound of the Neumann heat kernel, the boundary behavior of the Dirichlet heat kernel and Green kernel and the first gap of the Dirichlet eigenvalue. As for results on noncompact manifolds, the following results is obtained : generally, on noncompact Riemannian manifolds, the differential operator, Laplacian is defined, and its spectrum is closely related to the geometry of the manifolds and studied by many authors from various points of view. In particular, the essential spectrum of the Laplacian of noncompact complete Riemannian manifolds depends only on the geometry of the infinity of manifolds. Kumura considered the average of curvatures near the infinity with respect to some measure and studied its convergence and the essential spectrum of the Laplacian. He generalized a results of Donnelly and his own one.
Kasue studied the relationship between convergence of manifolds and Dirichlet forms, Sato studied the Jorgensen group, Akutagawa studied the Yamabe invariant and Okumura studied Teichmuller space from the global analytic viewpoint.

  • Research Products

    (40 results)

All Other

All Publications (40 results)

  • [Publications] Hironori Kumura: "Nash inequalities for compact manifolds with boundary"Kodai Math. J.. 24. 352-378 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Hironori Kumura: "A note on the absence of eigenvalues on negatively curved manifolds"Kyushu J. Math.. 56. 109-121 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Hironori Kumura: "On the intrinsic ultracontractivity for compact manifolds with boundary"Kyushu J. Math.. 57. 29-50 (2003)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Atsushi Kasue, Hironori Kumura: "Spectral convergence of conformally immersed surfaces with bounded mean curvature"Journal of Geometric Analysis. 12. 663-681 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Atsushi Kasue: "Convergence of Riemannian manifolds and Laplace operators I"Ann. Inst. Fourier, Grenoble. 52. 1219-1257 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 加須栄 篤: "測度距離空間の収束とエネルギー形式"数学・日本数学会編集、岩波書店. 55-1. 20-36 (2003)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Atushi Kasue: "Convergence of Riemannian manifolds, Laplace operators and energy forms"Proceedings of the Fifth Pacific Rim Geometry Conference, Tohoku Math. Publ.. 20. 75-97 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Hiroki Sato: "Jorgensen's inequality for classical Schottky groups of real type II"J. Math. Soc. Japan. 53. 791-811 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Hiroki Sato: "The Pieard group, the figure-eight knot group and Jorgensen groups"RIMS Kokyuroku, Koto Univ.. 1223. 37-42 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Hiroki Sato: "Jorgensen groups and picard group"Proc. The Third ISAAC International Congress, Academic Scientific Publ.. (to appear). (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Hiroki Sato: "The Jorgensen number of the Whitehead link"RIMS kokyuroku 1270, Kyoto Univ.. 1270. 77-83 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Hiroki Sato, C.Li, M.Oichi: "Jorgensen groups of parabolic type I (Finite type)"RIMS kokyuroku 1293, Kyoto Univ.. 1293. 65-77 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Hiroki Sato, C.Li, M.Oichi: "Jorgensen groups of parabolic type II (Countable infinite type)"RIMS kokyuroku, Kyoto Univ.. (to appear). (2003)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] K.Akutagawa: "Notes on the relative Yamabe invariant"Differential Geometry, Josai Mathematical Monographs. 3. 105-113 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] R.Aiyama, K.Akutagawa: "The Dirichiet problem at infinity for harmonic map equations arising from constant mean curvature surfaces in hyperbolic 3-sapce"Calc. Var. Partial Differential Equations. 14. 399-428 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] K.Akutagawa, B.Botvinnik: "The relative Yamabe invariant"Comm. Anal. Geom.. 10. 935-969 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] K.Akutagawa, B.Botvinnik: "Manifolds of positive scalar curvative and conformal cobordism theory"Math. Ann.. 324. 817-840 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] K.Akutagawa: "An obstruction to the positivity of relative Yamabe invariants"Math. Z.. 243. 85-98 (2003)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] K.Akutagawa, B.Botvinnik, O.Kobayashi, H.Seshadri: "The Weyl funetional neare the Yamabe invarinat"J. Geom. Anal.. 13. 1-20 (2003)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] K.Akutagawa, B.Botvinnik: "Yamabe metrics on cylindrical manifolds"Geom. Funct. Anal.. (to appear). (2003)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Y.Okumura: "Lifting problem and its application to Riemann surfaces"Eighth International Conference on Complex Analysis. 173-179 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 加須栄 篤: "測度距離空間の幾何解析-リプシッツ関数の微分を中心に-"リーマン多様体とその極限 数学メモアール"日本数学会(仮題)(出版予定). 123

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] A. Kasue: "Convergence of Riemannian manifolds, Laplace operators and energy forms"Proceedings of the Fifth Pacific Rim Geometry Conference (ed. S. 〜Nishikawa), Tohoku Math. Publ.. 20. 75-97 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] A. Kasue: "Convergence of Riemannian manifolds and Laplace operators I"Ann. l'Institut Fourier. 52-4. 1219-1257 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] A. Kasue and H. Kumura: "Spectral convergence of conformally immersed Surfaces with bounded mean curvature"J. Geom. Anal.. 12-4. 663-681 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] A. Kasue: "Convergence of measured metric spaces and energy forms (Japanese)"Suugaku. 55-1. 20-36

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H. Sato: "Jorgensen's inequality for classical Schottky groups of real type, II"J. Math. Soc. Japan. 53. 791-811 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H. Sato: "The Picard group, the figure-eight knot group and Jorgensen groups"RIMS Kokyuroku, Kyoto Univ.. 1223. 37-42 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H. Sato: "Jorgensen groups and the Picard group"Proc. The Third ISAAC International Congress. to appear. (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H. Sato: "The Jorgensen number of the Whitehead link"RIMS Kokyuroku, Kyoto Univ.. 1270. 77-83 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H. Sato, C. Li, and M. Oichi: "Jorgensen groups of parabolic type I (Finite type)"RIMS Kokyuroku, Kyoto Univ.. 1293. 65-77 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H. Sato, C. Li, and M. Oichi: "Jorgensen groups of parabolic type II (Countable infinite type)"RIMS Kokyuroku, Kyoto Univ.. to appear. (2003)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Kazuo Akutagawa: "Notes on the relative Yamabe invariant"Differential Geometry, Josai Mathmatical Monographs. 3. 105-113 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Reiko Aiyama and Kazuo Akutagawa: "The Dirichlet problem at infinity for harmonic map equations arising from constant mean curvature surfaces in the hyperbolic-space"Calc. Var. Partial Differential Equations. 14. 399-428 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Kazuo Akutagawa and Boris Botvinnik: "The relative Yamabe invariant"Comm. Anal. Geom.. 10. 935-969 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Kazuo Akutagawa and Boris Botvinnik: "Manifolds of positive scalar curvature and conformal cobordism theory"Math. Ann.. 324. 817-840 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Kazuo Akutagawa: "An obstruction to the positivity of relative Yamabe invariants"Math. Z.. 243. 85-98 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Kazuo Akutagawa, Boris Botvinnik, Osamu Kobayashi and Harish Seshadri: "The Weyl functional near the Yamabe invariant"J. Geom. Anal.. 31. 1-20 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Kazuo Akutagawa and Boris Botvinnik: "Yamabe metrics on cylindrical manifolds"Geom. Funct. Anal.. to appear. 75 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Yoshihide Okumura: "Lifting problem and its application to Riemann surfaces"Eighth International Conference on Complex Analysis. 173-179 (2001)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2004-04-14  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi