• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2002 Fiscal Year Final Research Report Summary

Research on triviality of real singularities

Research Project

Project/Area Number 13640070
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Geometry
Research InstitutionHyogo University of Teacher Education

Principal Investigator

KOIKE Satoshi  Hyogo University of Teacher Education, Faculty of School Education, Associate Professor, 学校教育学部, 助教授 (60161832)

Co-Investigator(Kenkyū-buntansha) FUKUI Toshizumi  Saitama University, Faculty of Science, Professor, 理学部, 教授 (90218892)
SHIOTA Masahiro  Nagoya University, Graduate School of Mathematics, Professor, 大学院・多元数理科学研究科, 教授 (00027385)
Project Period (FY) 2001 – 2002
KeywordsBlow-Nash triviality / Blow-semialgebraic triviality / motivic-type invariant / Fukui invariant / stratified set / Isotopy Lemma / blow-analytic equivalence / toric modification
Research Abstract

In this research we have studied triviality of real algebraic singularities and real analytic singularities. In particular. we have considered die problem whether a finiteness theorem holds or not and looked for invariants for some equivalence of singularities. Finiteness property guarantees for the triviality we are considering to be appropriate or reasonable, and the discovery of invariants is important to show that the family of singularities is not trivial.
(1) Finiteness theorems on blow-semialgebraic triviality for the family of Nash sets.
In the previous paper, we showed that for the family of zero-sets of Nash mappings defined over a compact Nash manifold and the family of zero-set-germs of Nash mappings, we can divide the parameter space into finitely many Nash manifolds on which the family of zero-sets admits a Nash trivial simultaneous resolution. It follows from this result that a finiteness theorem holds on Blow-Nash triviality in the case of isolated singularities. In addit … More ion, we proved also that for the family of Nash surfaces embedded in the 3-dimensional space we can divide tht parameter space into finitely many Nash manifolds on which the family is Blow-semialgebraically trivial in the case of non-isolated singularities.
In this research, we have considered the finiteness problems on Blow-semialgebraic triviality for real algebraic singularities in the case of non-isolated singularities. Concerning these problems, we have shown a finiteness theorem for the family of Nash surfaces embedded in the space of general dimension and a finiteness theorem for the family of 3-dimensional Nash sets not necessarily embedded in some space.
(2) Introductioin of motivic-type invariants for blow-analytic equivalence.
In the joint research with A.Parusinski, we have introduced motivic-type invariants for blow-analytic equivalence through an observation for concrete polynomial functions of 3 variables. This was motivated by Denef-Loeser invariants of complex analytic singularities. We have proved that they are blow-analytic invariants and we have given some formulae to compute our invariants and also the Thom-Sebastiani formulae. In addition, using some blow-analytic triviality theorems and these invariants, we have given a blow-analytic classification of Brieskorn polynomials of 2 variables and a blow-analytic classification of almost all Brieskorn polynomials of 3 variables. Less

  • Research Products

    (14 results)

All Other

All Publications (14 results)

  • [Publications] S.Izumi, S.Koike, T.C.Kuo: "Computations and stability of the Fukui invariant"Compositio Mathematicae. 130. 49-73 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] S.Koike: "Finiteness theoremes on Blow-Nash triviality for real algebraic singularities"Banach Center Publications. (掲載予定).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] S.Koike, A.Parusinski: "Motivic type invariants of blow-analytic equivalence"Annales de L'Institut Fourier. (掲載予定).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M.Coste, J.Ruiz, M.Shiota: "Uniform bounds on complexity and transfer of global properties of Nash functions"Journal fur die Reine und Angewandte Mathematik. 536. 209-235 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Fukui, L.Paunescu: "Stratification theory from the weighted point of view"Canadian Journal of Mathematics. 53. 73-97 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] T.Fukui, J.Weyman: "Cohen-Macauley properties of Thom-Boardman strata II"Proceedings of the London Mathematical Society. (掲載予定).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 福井敏純, 吉永悦男, 泉脩蔵: "解析関数と特異点"共立出版. 367 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] S.Izumi, S.Koike, T.C.Kuo: "Computations and stability of the Fukui invariant"Compositio Mathematicae. 130. 49-73 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M.Coste, J.Ruiz, M.Shiota: "Uniform bounds on complexity and transfer of global properties of Nash functions"Journal fur die Reine und Angewandte Mathcmatik. 536. 209-235 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.Fukui, L.Paunescu: "Stratification theory from the weighted point of view"Canadian Journal of Mathematics. 53. 73-97 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] S.Koike: "Finiteness theorems on Blow-Nash triviality for real algebraic singularities"to appear in Banach Center Publications.

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] S.Koike, A.Parusinski: "Motivic-type invariants of blow-analytic equivalence"to appear in Annales de L'Institut Fourier.

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.Fukui, J.Weyman: "Cohen-Macauley properties of Thom-Boardnian strata II"to appear in Proceedings of the London Mathematical Society.

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] T.Fukui, E.Yoshinaga, S.Izumi: "Analytic functions and Singularities"Kyoritsu Shuppan. (2002)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2004-04-14  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi