• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2002 Fiscal Year Final Research Report Summary

Topology of completions of the space of rational functions

Research Project

Project/Area Number 13640085
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Geometry
Research InstitutionUniversity of the Ryukyus

Principal Investigator

KAMIYAMA Yasuhiko  University of the Ryukyus, Department of Mathematics, Associate Professor, 理学部, 助教授 (10244287)

Co-Investigator(Kenkyū-buntansha) TEZUKA Michishige  University of the Ryukyus, Department of Mathematics, Professor, 理学部, 教授 (20197784)
SHIGA Hiroo  University of the Ryukyus, Department of Mathematics, Professor, 理学部, 教授 (40128484)
Project Period (FY) 2001 – 2002
Keywordsrational function / completion / loop space / homology / stable homotopy / homotopy fiber / instanton / Lie group
Research Abstract

For instanton moduli spaces we have the Uhlenbeck completion, which is useful in the field of gauge theory. The purpose of this study is to define a similar completion for spaces of rational functions from S^2 to a complex manifold V.
First we study the typical case V = CP^n. Let Rat_k(CP^n) be the space of based holomorphic maps of degree k from S^2 to CP^n. Let i_k : Rat_k(CP^n) → Ω^2_kCP^n 【similar or equal】 Ω^2S^<2n+1> be the inclusion. Segal showed that i_k is a homotopy equivalence up to dimension k(2n - 1). Later I and independently Cohen-Cohen-Mann-Milgram described the stable homotopy type of Rat_k(CP^n) in terms of stable summands of Ω^2S^<2n+1>.
Note that Rat_k(CP^n) consists of (n + 1)-tuples of monic degree k complex polynomials without common roots. Generalizing this, we define a space X^l_k(CP^n) by the set of (n + 1)-tuples of monic degree k complex polynomials with at most l roots in common. We have X^0_k(CP^n) = Rat_k(CP^n) and X^k_k(CP^n) = C^<k(n+1)>. In this study I proved that the latter is the Uhlenbeck completion of the former. This implies that X^l_k(CP^n) is a space which appears when we shift from Rat_k(CP^n) to its completion. Moreover, I succeeded in determining the stable homotopy type of X^l_k(CP^n).
Next I change CP^n to a loop group ΩG. In this case the space of rational functions from S^2 to ΩG is exactly the instanton moduli space. I studied its completion. In the process of the study, I was able to prove the following theorem: Let C be the centralizer of SU(2) in G and let J : G/C → Ω^3_0 be the map defined by J(gC)(x) = gxg^<-1>x^<-1>. Then J_* : H_*(G/C; Z/2) → H_*(Ω^3_0G; Z/2) is injective. Note that this result is a generalization of the Bott's theorem about generating maps of ΩG, and very interesting in itself.

  • Research Products

    (13 results)

All Other

All Publications (13 results)

  • [Publications] Yasuhiko Kamiyama: "Symplectic toric space associated to triangle inequalities"Geometriae Dedicata. 93. 25-36 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Yasuhiko Kamiyama: "On deformations of the complex structure on the moduli space of spatial polygons"Canadian Math.Bull.. 45. 417-421 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Yasuhiko Kamiyama: "Holomorphic vector fields on moduli spaces of polygons"New Zealand J.of Mathematics. 31. 39-42 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Yasuhiko Kamiyama: "Polynomial model for homotopy fibers associated with the James construction"Math.Z.. 237. 149-180 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Yasuhiko Kamiyama: "Sheaf cohomology of the moduli space of spatial polygons and lattice points"Tokyo Journal of Mathematics. 24. 205-209 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Yasuhiko Kamiyama: "Homology of the completion of instanton moduli spaces"Bull.Belgian Math.Soc.. (印刷中).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Yasuhiko Kamiyama: "Symplectic toric space associated to triangle inequalities"Geometriae Dedicata. Vol. 93. 25-36 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Yasuhiko Kamiyama: "On deformations of the complex structure on the moduli space of spatial polygons"Canadian Math. Bull.. Vol. 45. 417-421 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Yasuhiko Kamiyama: "Holomorphic vector fields on moduli spaces of polygons"New Zealand J. of Math.. Vol. 31. 39-42 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Yasuhiko Kamiyama: "Polynomial model for homotopy fibers associated with the James construction"Math. Z.. Vol. 237. 149-180 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Yasuhiko Kamiyama: "Sheaf cohomology of the moduli space of spatial polygons and lattice points"Tokyo Journal of Mathematics. Vol. 24. 205-209 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Yasuhiko Kamiyama: "Homology of the completion of instanton moduli spaces"Bull. Belgian Math. Soc.. to appear.

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Hiroo Shiga: "Principal S'-bundles and forgetful maps"Contemporary Mathematics. Vol. 274. 293-297 (2001)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2004-04-14  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi