• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2002 Fiscal Year Final Research Report Summary

Density theorem in number theory and limit theorem in probability theory - LLN, CLT etc.

Research Project

Project/Area Number 13640108
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field General mathematics (including Probability theory/Statistical mathematics)
Research InstitutionKanazawa University

Principal Investigator

TAKANOBU Satoshi  Graduate School of Natural Science and Technology Associate Professor, 自然科学研究科, 助教授 (40197124)

Co-Investigator(Kenkyū-buntansha) NAKAO Shintaro  Faculty of Science Full Professor, 理学部, 教授 (90030783)
ICHINOSE Takashi  Faculty of Science Full Professor, 理学部, 教授 (20024044)
FUJIMOTO Hirotaka  Faculty of Science Full Professor, 理学部, 教授 (60023595)
TAMURA Hiroshi  Faculty of Science Associate Professor, 理学部, 助教授 (80188440)
FUJIMAGARI Tetsuo  Faculty of Science Full Professor, 理学部, 教授 (60016102)
Project Period (FY) 2001 – 2002
KeywordsDirichlet's density theorem / Law of large numbers / CLT-scaling / Finite integral adeles
Research Abstract

Our purpose of the project is as follows : We formulate Dirichlet's density theorem stating the probability of two integers to be co-prime as law of large numbers (LLN), and then we consider central limit theorem scaling (CLT-scaling) and find a limit theorem on it.
Let us consider (Zhat, \lambda) as a fundamental probability space, where Zhat is a finite integral adele and \lambda the Haar probability measure on it. For each (x,y) \in Zhat \times Zhat, let X(x,y) = 1 or 0 according as (x,y) is co-prime or not. Then, as N\to\infty, S_N(x,y) = (1/N)^2 \sum_{m,n=1}^N X(x+m,y+n) converges to 6/\pi^2 a.s., which is just LLN.
Next we consider the limit behavior of CLT-scaling N(S_N(x,y)-6/\pi^2). Then we can describe completely the set of all limit points of {N(S_N(x,y)-6/\pi^2)} in the L^2-space by parametrizing them continuously in terms of elements of a quotient ring Zhat/\sim. In particular, N(S_N(x,y)-6/\pi^2) is not convergent as N\to\infty. In a word, CLT does not hold!
If, however, we … More interpret the convergence in the sense of Cesaro, then
(1/N) \sum_{n=l}^N n(S_n(x,y}-6/\pi^2) \to U(x) + U(y) in l^2.
Here
U(x) = \sum_{u=1}^{\infty} (\mu(u)/u) ((x\mod u)/u - (u-1)/2u) in L^2,
where \mu(u) is the Mobius function. So our study turns to an investigation of this U. In this project, it is seen that the distribution of U is symmetric and has moments of all orders. We further expect that U will be not normal distributed, although normal distributions with mean zero have the property above. If this is proved, we want to call the convergence above non CLT.
On the one hand, from the description of limit points of {N(S_N(x,y) -6/\pi^2)} N_k(S_{N_K}(x,y)-6/\pi^2) \to 0 in L^2 for whatever subsequence {N_k} such that N_k \not=0 and N_k \to 0 in Zhat/\sim. Renormalizing this by its standard deviation in order to find a nontrivial limit, we expect that the renormalization will converge to a standard normal distribution.
We can not succeed in proving these two conjectures within the term of project. We are instead giving a verification by computational experiment. Less

  • Research Products

    (12 results)

All Other

All Publications (12 results)

  • [Publications] Satoshi Takanobu: "On the strong-mixing property of skew product of binary transformation on 2-dimensional torus by irrational rotation"Tokyo Journal of Mathematics. 25. 1-15 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Hiroshi Sugita, Satoshi Takanobu: "The probability of two integers to be co-prime, revisited-on the behavior of CLT-scaling limit"Osaka Journal of Mathematics. (2003)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Hirotaka Fujimoto: "On uniqueness polynomials for meromorphic functions"Nagoya Mathematical Journal. (2003)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Takashi Ichinose, Brian Jefferies: "The propagator of the radial Dirac equation"J.Math.Phys.. 43. 3963-3983 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Christian Gruber, Hiroshi Tamura, Valentin A.Zagrebnov: "Berezinsky-Kosterlitz-Thouless order in two-dimensional O(2)-ferrofluid"J.Stat.Phys.. 106. 875-893 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Takashi Ichinose, Hideo Tamura: "The norm convergence of the Trotter-Kato product formula with error bound"Commun.Math.Phys.. 217. 489-502 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Satoshi Takanobu: "On the strong-mixing property of skew product of binary transformation on 2-dimensional torus by irrational rotation"Tokyo Journal of Mathematics. 25. 1-15 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Hiroshi Sugita and Satoshi Takanobu: "The probability of two integers to be co-prime, revisited - on the behavior of CLT-scaling limit"Osaka Journal of Mathematics. to appear.

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Hirotaka Fujimoto: "On uniqueness polynomials for mero moiphic functions Nagoya"Mathematical Journal. to appear.

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Takashi Ichinose and Hideo Tamura: "The norm convergence of the Trotter-Kato product formula with error bound"Commun. Math. Phys.. 217. 489-502 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Takashi Ichinose and Brian Jefferies: "The propagator of the radial Dirac equation"J. Math. Phys.. 43. 3963-3983 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Christian Gruber, Hiroshi Tamura and Valentin A. Zagrebnov: "Berezinsky-Kosterlitz-Thouless order in two-dimensional O(2)-ferrofluid"J. Stat. Phys.. 106. 875-893 (2002)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2004-04-14  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi