• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2002 Fiscal Year Final Research Report Summary

Research of Matrix Inequalities and Norm Inequalities on Matrices Algebra

Research Project

Project/Area Number 13640146
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Basic analysis
Research InstitutionHOKKAIDO UNIVERSITY OF EDUCATION

Principal Investigator

OKUBO Kazuyoshi  Hokkaido Univ. of Education, 教育学部・札幌校, 教授 (80113661)

Co-Investigator(Kenkyū-buntansha) HASEGAWA Izumi  Hokkaido Univ. of Education, 教育学部・旭川校, 教授 (50002473)
OSADA Masayuki  Hokkaido Univ. of Education, 教育学部・札幌校, 教授 (10107229)
SAKURADA Kuninori  Hokkaido Univ. of Education, 教育学部・札幌校, 教授 (30002463)
KOMURO Naoto  Hokkaido Univ. of Education, 教育学部・旭川校, 助教授 (30195862)
Project Period (FY) 2001 – 2002
KeywordsAluthge transformation / λ- Aluthge transformation / Numerical range / C-numerical range / q-numerical range / Numerical radius / Operator radius / Weakly unitarily invariant norm
Research Abstract

Let T ∈ B(H) and T = UP be a polar decomposition of T. For 0 < λ < 1, we define the λ-Aluthge transformation of T by P^λUP^<1-λ>. In particular, for λ = 1/2, T^^~ := P^<1/2>U P^<1/2> is called the Aluthge transformation of T (See [A]). The numerical range W(T) of T is defined by W(T) := {<x, Tx> | ||x|| = 1}. Recently, Yamazaki and Wu showed that W(T^^~) ⊂ W(T), then w(T^^~) 【less than or equal】 w(T) for the numerical radius w(・). In this research we extended these results. We give the following results as the parts of our works.
(i) On the generalized numerical range
Let T, C be n × n complex matrices. The C-numerical range of T is defined by W_C(T) := {tr(CU^*AU) | U; unitary}.
If C is a Hermitian matrix or a rank one matrix, then the following inclusion relation holds:
W_C(f(T^^~)) ⊂ W_C(f(T))
for f(z) is a complex polynomial.
(ii) The inequality on semi-norms.
Let A ∈ B(Η), and |||・||| be a semi-norm on B(Η). If |||・||| satisfy ∃γ, |||X||| 【less than or equal】 γ ||X|| (X ∈ B(H)), |||S^*XS||| 【less than or equal】 ||S||^2・|||X||| (X, S ∈ B(Η)). Then for 0 【less than or equal】 λ 【less than or equal】 1, |||f(A_λ)||| 【less than or equal】 max {|||f(A)|||, |||U^* ・f(A) ・ U + f(0)(I-U^*U)|||} for any polynomial f. From this fact, we can prove that for the operator radii w_ρ(・) (ρ > 0), 0 【less than or equal】 λ 【less than or equal】 1, and polynomial f, we have w_ρ(f(A_λ)) 【less than or equal】 w_ρ(f(A)).

  • Research Products

    (20 results)

All Other

All Publications (20 results)

  • [Publications] 大久保 和義(共著C.R.Johnson): "Uniqueness of matrix square roots under a numerical range condition"Linear Algebra and its Applications. 341. 194-199 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 長谷川 和泉(共著V.Sorin Sabau): "Some remarks on Randers spaces of constant flag curvature"Proceeding of the 37th Symposium on Finsler Geometry. 22-25 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 小室直人: "The set of uper bounds in ordered linear spaces, Proceedings of the International"Proceedings of the Interantional Conference on Nonlinear Analysis and Convex Analysis. (To appear). (2003)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 大久保 和義(共著H.Woerdeman): "Rank reducing matrix norms"Linear and Multilinear Algebra. (To appear).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 大久保 和義: "On weakly unitarily invarimat norm and the Aluthge transformation"Linear Algebra and its Applications. (To appear).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 大久保 和義(共著 伊藤, 中里, 山崎): "On generalized numerimcal range of the Aluthge transformation"Linear Algebra and its Applications. (To appear).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] N. Komuro: "Properties on the set of upper bounds in partially ordered linear space"Journal of Hokkaido university of Education. 51. 15-20 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] C. R. Johnson, K. Okubo, R. Reams: "Uniqueness of matrix square roots and applications"Linear Algebra and its Applications. 323. 51-60 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K. Okubo, I. Spitkovsky: "On the characterization of 2 x 2 p-contraction matrices"Linear Algebra and its Applications. 325. 177-189 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] I. Hasegawa, K. Yamauchi: "Infinitesimal projective transformations on tangent bundle with the horizontal lift connection"Journal of Hokkaido University of Education. 52. 1-6 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] N. Komuro: "PropertieGeneralized supremum in sequence spaces with order"Journal of Hokkaido University of Education. 52. 17-24 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] C. R. Johnson, K. Okubo: "Uniqueness of matrix square roots under a numerical range condition"Linear Algebra and its Applications. 341. 194-199 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] I. Hasegawa, V. Sorin Sabau, H. Shimada: "Some remarks on Randers spaces of constant flag curvature"Proceeding of the 37th Symposium on Finsler Geometry. 22-25 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] I. Hasegawa, K. Yamauchi: "Infinitesimal conformal transformations on tangent bundles with the lift metric I+II"Scientiae Mathematicae Japonicae. 57-1. 129-137 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] I. Hasegawa, K. Yamauchi: "Infinitesimal holomorphically projective transformations on the tangent bundles with the complete lift connection and the adapted almost complex structure"Journal of Hokkaido University of Education. 53. 1-8 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] N. Komuro: "The set of upper bounds in ordered linear spaces"Proceedings of the International Conference on Nonlinear Analysis and Convex Analysis. (To appear).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K. Okubo, H. Woerdeman: "Rank reducing matrix norm"Linear and Multiliner Algebra. (To appear).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] I. Hasegawa, V. Sorin Sabau, H. Shimada: "Randers spaces of constant flag curvature induced by almost contact metric structures"Hokkaido Mathematical Journal. (To appear).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M. Ito, H. Nakazato, K. Okubo, T. Yamazaki: "On generalized numerimcal range of the Aluthge transformation"Linear Algebra and its Applications. (To appear).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] K. Okubo: "Weakly unitarily invariant norm and the Aluthge transformation"Linear Algebra and its Applications. (To appear).

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2004-04-14  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi