• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2003 Fiscal Year Final Research Report Summary

Characterizations of real Hardy spaces and functional analysis

Research Project

Project/Area Number 13640148
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Basic analysis
Research InstitutionTOHOKU University

Principal Investigator

KANEKO Makoto  Tohoku University, Graduate School of Information Sciences, Professor, 大学院・情報科学研究科, 教授 (10007172)

Co-Investigator(Kenkyū-buntansha) TAYA Hisao  Tohoku University, Graduate School of Information sciences, Assistant, 大学院・情報科学研究科, 助手 (40257241)
HIAI Fumio  Tohoku University, Graduate School of Information Sciences, Professor, 大学院・情報科学研究科, 教授 (30092571)
NAKAMURA Makoto  Tohoku University, Graduate School of Information Sciences, Assistant, 大学院・情報科学研究科, 助手 (70312634)
OHNO Yoshiki  Tohoku University, Graduate School of information Sciences, Associate Professor, 大学院・情報科学研究科, 助教授 (80005777)
ARISAWA Mariko  Tohoku University, Graduate School of Information Sciences, Associate Professor, 大学院・情報科学研究科, 助教授 (50312632)
Project Period (FY) 2001 – 2003
KeywordsHardy space / vertical maximal function / non-tangential maximal function / grand maximal function / Orlicz-norm / Cauchy-Riemann equation / Klein-Gordon equation / Poisson integral
Research Abstract

We have been interesting in the methods to judge whether a given tempered distribution f on n-dimensional Euclidean space is in a Hardy space or not. One of the methods is to investigate the integrability of one of the maximal functions made from f. There are many kinds of maximal functions which might be the tools for the purpose. Among them, we have picked up the following maximal functions. We take a test function on the same space where f is given and consider the dilations of it with dilation rates t. Then we have a family of the functions which are the convolutions of f and the dilations of the test function with the dilation rates t. Then the components of the family have parameters t. The vertical maximal function of f with respect to the given test function is defined by the supremum of the family taken over all t > 0. The non-tangential maximal function is such a function whose value at a point x is the supremum of the values of the convolution over such t and y that the dist … More ance from x to y is in less than t. The modified maximal function is the improvement of the non-tangential maximal function to reflect the behavior of the convolution in the long distant area from x. The above maximal functions are determined by the given test function. Now we consider the all test functions satisfying certain conditions. For each test function, we can get a corresponding vertical maximal function. Among them we take the largest one and call it the grand maximal function of f. We have also treated the vertical maximal function and the non-tangential maximal function made from the Poisson integral of f.
In our research, we have investigated the integral estimates of such functions that are obtained by putting a function of lower p type over the above maximal functions. These integrals contain the Orlicz-norms and the p-th integral means.
We have proved the equivalence between the finiteness of these integrals and given some improvements of proofs appearing in the papers treating the related topics. Less

  • Research Products

    (12 results)

All Other

All Publications (12 results)

  • [Publications] M.Kaneko, Y.Zhang: "Comparison between the Orlicz norms of the maximal functions characterizing the Hardy spaces"Interdisciplinary Information Sciences. 8・2. 151-156 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M.Nakamura: "A miniature scattering theory for nonlinear Klein-Gordon equations"Kyushu J.Math.. 57・2. 255-263 (2003)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M.Nakamura, T.Ozawa: "Small data scattering for nonlinear Schr\"{o}dinger wave and Klein-Gordon equations"Ann.Scuola Norm.Sup.Pisa Cl.Sci.(5). 1・2. 435-460 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] F.Hiai, X.Zhan: "Submultiplicativity vs subadditivity for unitarily invariant norms"Linear Alg.Appl.. 377. 155-164 (2004)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] F.Hiai, Y.Ueda: "Automorphisms of free product-type and their crossed-products"J.Operator Theory. 50・1. 119-130 (2003)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 田谷 久雄, 福田 隆: "岩澤不変量の計算"日本応用数理学会論文誌. 12・4. 293-306 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] M.Kaneko, Y.Zhang: "Comparison between the Orlicz norms of the maximal functions characterizing the hardy spaces"Interdisciplinary Information Sciences. 8-2. 151-156 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M.Nakamura: "A miniature scattering theory for nonlinear Klein-Gordon equations"Kyushu J.Math.. 57-2. 255-263 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] M.Nakamura, T.Ozawa: "Small data scattering for nonlinear Schr\"{o} dinger wave and Klein-Gordon equations"Ann.Schuola Norm.Sup.Pisa Cl.Sci.. (5)1-2. 435-460 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] F.Hiai, X.Zhan: "Submultiplicativity vs subadditivity for unitarily invariant norms"Linear Alg.Appl.. 377. 155-164 (2004)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] F.Hiai, Y.Ueda: "Automorphisms of free product-type and their crossed-products"J.Operator Theory. 50-1. 119-130 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] H.Taya, T.Fukuda: "Computation of Iwasawa invariants (Japanese)"日本応用数理学会論文誌. 12-4. 293-306 (2002)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2005-04-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi