• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2002 Fiscal Year Final Research Report Summary

Research of the behavior of infinite time blowup solutions to systems related to chemotaxis and those blowup points

Research Project

Project/Area Number 13640181
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Basic analysis
Research InstitutionMiyazaki University

Principal Investigator

SENBA Takashi  Miyazaki University, Faculty of Engineering, Professor, 工学部, 教授 (30196985)

Co-Investigator(Kenkyū-buntansha) KABEYA Yoshitsugu  Miyazaki University, Faculty of Engineering, Associate Professor, 工学部, 助教授 (70252757)
TSUJIKAWA Tohru  Miyazaki University, Faculty of Engineering, Professor, 工学部, 教授 (10258288)
Project Period (FY) 2001 – 2002
KeywordsPartial differential equation / Biology / Keller-Segel model / Blowup / Chemotaxis
Research Abstract

The aim of this research is the investigation of behavior of infinite time blowup solutions to Keller-Segel model and Nagi system which is a simplified system of Keller-Segel model. We get the following results.
(1) Behavior of infinite blowup solutions to Nagi system
Firstly, we show that quantities of some integrals of the solutions blow up in infinite time, the blowup point is only the origin of the domain, and that the concentrating mass at the blowup point is equal to the threshold number determining the coefficient of Nagi system. The result is published in Nonlinear Analysis. Secondly, we show the above result without the assumption of radical symmetric. Here, we show that the concentrating mass is equal to threshold number in the case where the blowup point is in the domain, and that the concentrating mass is equal to the half of the threshold number in the case where the blowup point is on the boundary. In order to show the result, we show a compactness of solutions and develop the method of the spatial localized rearrangement. The result is published in Asymptotic Analysis.
(2) Behavior of finite time blowup solutions to Jager-Luchkhaus system
Applying the compactness of solutions and the method of the spatial localized rearrangement mentioned above to radial symmetric solutions of Jager-Luchkhaus system, which is another simplified system of Keller-Segel model, we show that the concentrating mass at the blowup point is equal to threshold number for finite time blowup solution whose rescaled solutions blow up at infinite time. We presented the result in the international conference and the Mathematical Society of Japan.

  • Research Products

    (16 results)

All Other

All Publications (16 results)

  • [Publications] Takasi Senba: "Time global solutions to a parabolic-elliptic system modelling chemotaxis"Asymptotic Analysis. 32. 63-89 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Takasi Senba: "Behavior of solutions to a system related to chemotaxis"Nonlinear Analysis. 47. 2551-2562 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Takasi Senba: "Parabolic system of chemotaxis : Blowup in a finite and the infinite time"Methods and Applications of Analysis. 8・2. 349-368 (2001)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Koichi Osaki: "Exponential attractor for a chemotaxis-growth system of equations"Nonlinear Analysis. 51. 119-144 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Tohru Tsujikawa: "Exponential attractor for an adsorbate-induced phase transitions model"Kyushu Journal of Mathematics. 56・2. 313-336 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Yoshitsugu Kabeya: "Behavior of least-energy solutions to Matukuma type equations"Journal of the Mathematical Society of Japan. 54・4. 937-973 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Yoshitsugu Kabeya: "Blowup rate of solutions to the Brezis-Nireberg equations with the Robin condition"Funkcialaj Ekvacioj. 45・2. 291-318 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Yoshitsugu Kabeya: "Canonical forms and structure theorems for radial solutions to semi-linear elliptic problems"Communications on Pure and Applied Analysis. 1・1. 85-102 (2002)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Takashi Senba and Takashi Suzuki: "Time global solutions to a parabolic-elliptic system modeling chemotaxis"Asymptotic Analysis. 32. 63-89 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Takashi Senba and Takashi Suzuki: "Behavior of solutions to a system related to chemotaxis"Nonlinear Analysis. 47. 2551-2562 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Takashi Senba and Takashi Suzuki: "Parabolic system of chemotaxis: Blowup in a finite and the infinite time"Methods and Applications of Analysis. 8-2. 349-368 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Koichi Osaki, Tohru Tsujikawa, Atsushi Yagi and Masayasu Mimura: "Exponential attractor for a chemotaxis-growth system of equations"Nonlinear Analysis. 51. 119-144 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Tohru Tsujikawa and Atsushi Yagi: "Exponential attractor for an absorbate-induced phase transition model"Kyushu Journal of Mathematics. 56-2. 313-336 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Yoshitsugu Kabeya: "Behavior of least-energy solutions to Matukuma type equations"Journal of the Mathmatical Society of Japan. 54-4. 937-973 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Yoshitsugu Kabeya: "Blowup rate of solutions to the Brezis-Nirenberg equations with the Robin condition"Funkcialaj Ekvacioj. 45-2. 291-318 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Yoshitsugu Kanbe, Eiji Yanagida and Shoji Yotsutani: "Canonical forms and structure theorems for radial solutions to semi-linear elliptic problems"Communications on Pure and Applied Analysis. 1-1. 85-102 (2002)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2004-04-14  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi